Katóda LiFePO4
LiFePO4, LiFeYPO4, atd., zkušenosti, rady, tipy ...
-
- Příspěvky: 5451
- Registrován: pát úno 13, 2015 2:24 pm
- Lokalita: SO, SK
- Bydliště: SO, SK
Katóda LiFePO4
Lítium-iónové batérie
Prvé lítiové batérie na báze Li/Li+/LixTiS2 boli rýchlo stiahnuté z trhu
okolo r. 1970, kvôli formovaniu dendritov Li, ktoré viedlo k skratu batérie.
V r. 1991 uviedla firma Sony na trh batérie na báze LixC6/Li+/Li1-xCoO2.
Lítiová metalická anóda bola nahradená grafitovou anódou, ktorá má schopnosť
reverzibilne interkalovať Li+ a má výrazne nižší potenciál voči lítiu.
Aby sa zlepšili parametre batérií, bolo nutné zlepšiť materiály katódy.
Katódové materiály sú typicky oxidy a fosfáty rôznych kovov.
Štrukturálna stabilita katódy je dôležitá hlavne počas nabíjania,
keď sa skoro všetko lítium presúva do anódy.
Pri výrobe lítium-iónových batérií, je batéria konštruovaná vo vybitom stave,
ergo ióny lítia sú v katóde a grafitová anóda neobsahuje ióny lítia.
Na rozdiel od iných technológií, kde elektródy reagujú s elektrolytom,
u lítium-iónových batérií, je to presun Li+ a elektrónov.
Interkalačný proces prepieha nasledovne:
Typ: LixC6/Li+/Li1-xMaXb
C6 + xLi+ + xe- <-> LixC6
katóda: Li1MaXb <-> Li1-xMaXb + xLi+ + xe-
Efektivita interkalačného procesu je determinovaná vlastnosťami iónového
a elektrónového transportu materiálov oboch elektród, množstvom miest
dostupných pri Li+ a hustotou dostupných elektronických stavov.
Prúdová hustota tiež závisí na iónovo-elektrónových transportných vlastnostiach
materiálov oboch elektród. V dôsledku toho aj napatie, kapacita, energetická
hustota, prúdová hustota sú definované vlastnosťami materiálov elektród.
Počet nabíjacích cyklov a kalendárna životnosť sú podmienené procesmi,
ktoré prebiehajú na rozhraní elektródy a elektrolytu. Bezpečnosť článkov
závisí na teplotnej a chemickej stabilite materiálov elektród a elektrolytu.
Dotupnosť Li+ na rozhraní povrchu elektród a elektrolytu určuje maximálny
vybíjací prúd.
LiFePO4
Hlavnými interkalačnými oxidmi sú LiCoO2, LiNiO2, LiMnO2 a ich kompozity.
LiCoO2 je drahý a toxický. Čistý LiNiO2 podlieha exotermickej oxidácii elektrolytu
s kolabujúcou delítiovanou štruktúrou LixNiO2. Cyklická a termálna stabilita
LiMn2O4 je tiež limitujúcim faktorom. Potrebujeme katódový materiál, ktorý
je lacnejší, bezpečnejší a výkonnejší ako LiCoO2.
Katódové materiály: / tab 1 /
/ tab 2 /
Dôležitým katódovým materiálom je LiMPO4 / M = Fe, Co, Ni, Mn /. Má olivínovú štruktúru.
Katódy LiMnPO4, LiCoPO4 a LiNiPO4 majú vyššie OCV / 4.1 až 4.8 V / v porovnaní
s LiFePO4 / 3.5 V /. LiFePO4 má reakčný potenciál okolo 3.5 V, má dobrú cyklickú
a termálnu stabilitu, tiež je environmentálne nezávadný.
Štruktúra a charakteristika LiFePO4
LiFePO4 ma dostatočnú reverzibilnú kapacitu okolo 3.5 V ako aj významnú
cyklickú životnsoť, pretože zmeny objemu sú okolo 6.8 %.
V štruktúre LiFePO4, Li má náboj +1, Fe +2 a PO4 -3. Po odstránení Li+,
sa materiál konvertuje na FePO4. Fe a 6 atómov kyslíka tvoria oktohedrálnu štruktúru.
Fe je uprostred. 3D štruktúra je tvorené zdieľanými atómami O. Li+ ležia v oktahedrálnych
kanáloch v cik-cak štruktúre. b = 6.008 Å, a = 10.334 Å, and c = 4.693 Å. Objem: 291.4 Å3.
Hlavnými nevýhodami LiFePO4 je nízka elektrónová vodivosť a nízka Li+ difúzia.
Syntéza LiFePO4
Práškový LiFePO4 je pripravovaný pevnými metódami ako aj metódami založenými na roztokoch.
Solid-state syntéza, mechanochemická aktivácia, uhlíkovotermálna redukcia a mikrovlný ohrev
sú najčastejšími medódami pre prípavu LiFePO4.
Solid-state syntéza prebieha pri vysokých teplotách a tlakoch. Nevýhodou je však neuniformita
častíc v nekryštalickej forme ako aj časová náročnosť procesu. Väčšie častice vedú k horším
elektrochemickým vlastnostiam. LiF, Li2CO3, LiOH.2H2O a CH3COOLi sú zdrojmi lítia,
FeC2O4.2H2O, Fe/CH3COO2/2 a FePO4/H2O/2 sú zdrojmi Fe a NH4H2PO4 a /NH4/2HPO4 sú zdrojmi P.
Produkcia LiFePO4 prášku začína mletím prekurzorov. Potom nastáva peletizácia a kalcinácia.
Prekalcinácia začína pri 250 - 300 *C a druhý krok finálnej kalcinácie je pri 400 - 800 *C.
Teplota vypaľovania má významný vplyv na štruktúru, veľkosť častíc ako aj vybíjaciu kapacitu
LiFePO4. Sintrovanie prebieha vačšinou pri 650 - 700 *C.
Mechanochemická aktivácia sa používa na zvýšenie chemickej reaktivity. Nevýhodami je viac nečistôt
ako aj nárast teploty. Nárast teploty vedie k dekompozícii prekurzorov. Mixtúry sú neskôr
peletizované a kalcinované pri 600 - 900 *C, v atmosfére 95 % Ar a 5 % H2 a N2.
Pri týchto procesoch sa stáva, že FeII začína tvoriť FeIII. Uhlíkovo-termálna redukcia dovoľuje
použiť lacnejšie FeIII zlúčeniny, oproti nestabilným FeII zlúč. Čierny uhlík, grafit a pyrolizované
organické zlúč., sú používané ako redukčný agent. Rýchlosť reakcie závisí od veľkosti častíc,
redukčných prostriedkov, premiešania, koncentrácie plynov atď. Vlastnosti výsledného prášku
závisia na teplote, tlaku, prekurzoroch a redukčných agentoch. Procedúra zahŕňa premiešanie
stechiometrického množstva prekurzorov a redukčných agentov a kalcinácie pri 550 - 850 *C,
v inertnej atmosfére.
Mikrovlnové ohrievanie je ďalšou metódou produkujúcou LiFePO4. Toto ohrievanie prebieha
na molekulárnej úrovni, čo umožňuje volumetrické ohrievanie materiálu absorbovaním energie
mikrovĺn. Stupeň ohrevu je kontrolovaný výkonom žiariča a disipáciou tepla povrchom častíc.
Výhodami metódy sú krátky čas ohrevu, malé množstvo energie a nízka cena. Nie je potrebný
redukujúci plyn. Takto pripravený prášok má častice s malými rozmermi, uniformnú veľkosť
častíc, plynulejšiu povrchovú morfológiu častíc a tým vačšiu vybíjaciu kapacitu.
Ako mikrovlnový absorbér sa používa uhlík. Príprava prebieha vo vzduchu. Dlhšie ohrievanie
spôsobuje vačšie častice, nižší Li difúzny koeficient, ergo významnú stratu kapacity.
Dlho trvajúce ohrievanie tiež spôsobuje vyšší obsah Fe2P. Ak dosiahne Fe2P kritické množstvo,
časť LiFePO4 sa zmení na izolujúci Li4P2O7. Ak je ohrievanie veľmi krátke, tvoria sa kontaminanty,
ktoré zhoršujú vybíjaciu kapacitu.
Pre dosiahnutie lepších výsledkov sa používa aj mokré metódy. Medzi ne patrí hydrotermálna syntéza,
sol-gel syntéza, sprejová pyrolýza, koprecipitácia a mikroemulzia.
Hydrotermálna syntéza je chemický proces, ktorý prebieha pri zahriatí roztoku nad bod varu vody.
Počas procesu zohriata voda akceleruje difúziu častíc a rast kryštálov je rýchly.
Reaktor / autokláv / je environmentálne neškodný. Po zmixovaní prekurzorov v stechiometrickom
pomere sa teplota zvýši na 120 - 220 *C. Ak je nutná karbonizácia, zaradí sa krok kalcinácie
pri 400 - 750 *C. Ako zdroj uhlíka sa používa cukor, askorbová kyselina, MWCNT a organický
surfaktant acetyl trimetyl amónium bromid / CTAB /. Reakčný čas, stupeň ionizácie, veľkosť
častíc a kryštalická štruktúra LiFePO4 sú závislé na teplote.
Sol-gel syntéza je nízkoteplotný mokrý proces, ktorý sa používa na prípravu oxidov kovov.
Vytvorí sa koloidná suspenzia a tá sa zmení na gel. Gel sa vysuší na xerogel. Teplota,
čas, pH, prekurzory, rozpúšťadlá, ich koncentrácia a viskozita determinujú veľkosť častíc,
ich tvar, porozitu atď. Sol-gel syntéza je nízkonákladová a vyznačuje sa vysokou čistotou
častíc, ich uniformnou štruktrou a malými rozmermi častíc. Pomalé zahrievanie produkuje
drsnejšie a menej porézne štruktúry. Rýchle zahrievanie produkuje poréznejšie štruktúry.
Sprejová pyrolýza je ultrasonická metóda, ktorá je veľmi efektívna. Veĺkosť častíc je kontrolovateĹná
v submikrometrovom rozsahu. Kvapky slúžia ako nukleačné centrá a z nich vznikajú kryštalické
a husté partikuly. Takto produkovaný prášok má častice menšie ako 1 um, s veľkým povrchom
a vysokou čistotou. Roztok prekurzorov sa pumpuje do pyrolyzačnej pece okolo 400 - 600 *C.
Zberaný prášok sa potom zahrieva na 700 - 800 *C. Môže sa pridať zdroj uhlíka, aby mali
LiFePo4/C častice väčší povrch.
Koprecipitácia je ďalšou metódou, ktorá vedie k časticiam vysokej čistoty a malých rozmerov.
Koprecipitácia mixtúr prekurzorov je kontrolovaná pH. Sušené prekurzory vytvoria amorfný LiFePO4.
Kryštalický prášok je získaný ďalšou kalcináciou pri 500 - 800 *C pri N2 atmosfére. Častice
majú rozmery od 100 nm do niekoľkých um. Vlastnosti LiFePO4 môžu byť ďalej zlepšené intrudovaním
zdroja C alebo zdroja kovu do koprecipitačného procesu.
LiFePO4 prášok može byť tiež pripravený vysušením mikroemulzie. Tú tvorí voda, olej a emulzifikačný
agent. Začína sa prípravou vodných roztokov prekurzorov v stechiometrickom pomere. Potom je vodná
a hydrokarbónová fáza spolu zmixovaná. Získaná mikroemulzia je sušená pri 300 - 400 *C. V ďalšom
kroku je vysušená emulzia calcinovaná pri 650 - 850 *C pod argónovou atmosférou.
Zlepšenie vlastností LiFePO4
Nízka elektrónová vodivosť LiFePO4 a nízky difúzny koeicient Li+ sú hlavnými nedostatkami,
ktoré limitujú uplatnenie LiFePO4. LiFePO4 má vodivosť 10-9 až 10-10 S.cm-1 a difúzny
koeficient 10-12 až 10-14 cm2.s-1, v závisloti na koncentrácii Li+.
Preskúmanie metód na elimináciu týchto nevýhod je veľmi dôležité.
/ tab 3 /
Existuje niekoľko prístupov:
1, zlepšiť elektrónovú vodivosť potiahnutím častíc uhlíkom alebo využiť disperziu
Cu a Ag do roztokov počas syntézy, prípadne použiť nanočastice Al2O3 a MgO
2, kontrolovať veľkosť častíc, aby sa dosiahli homogénne polykryštalické nano partikuly
LiFePO4 optimalizíciou podmienok syntézy
3, selektívne dopovanie supervalentnými katiónmi voči Li
Potiahnutie častíc uhlíkom viedlo k teoretickým kapacitám 170 mAh g-1 pri izbovej teplote.
Jednou z jeho funkcií je zlepšiť elektrónovú vodivosť. Ďalšou funkciou je zabránenie agregácie
nanočastíc a poskytnutie cesty pre Li+. Je potvrdené, že vodivý uhlík musí byť homogénne
rozptýlený po katóde, aby zlepšil elektrónovú vodivosť. Tiež sa zistilo, že difúzny koef.
je ovplyvnený uhlíkom. Pri syntéze LiFePO4 je čierny uhlík pridaný ako prekurzor.
Potianutie uhlíkom však znižuje volumetrickú energetickú hustotu, preto obsah uhlíka
musí byť optimalizovaný. Preto je kľúčovým nájsť vhodný zdroj uhlíka a vytvoriť lacné
a efektívne fabrikačné procesy.
Pozorovaný úbytok kapacity pri cyklovaní je dôsledkom veľkých častíc, ktoré majú malý povrch
a tým sa znižuje difúzia na LiFePO4/FePO4 interfejse. Ergo, aby sa dosiahli lepšie vlastnosti
katódy, je nutné minimalizovať veľkosť partikúl a dosiahnuť vačší špecifický povrch.
Nanoštruktrovaný materiál je benefitom, najmä ak potrebujeme dosiahnuť prúdy 5C.
Nanočastice tiež zlepšujú kinetiku Li+, pretože redukujú difúznu vzdialenosť.
Vlastnosti katódy možu byť zlepšené dopovaním iónmi Mg2+, Al3+, Ti4+, Zr4+ a Nb5+, čím sa
dosahuje lepšia elektrónová vodivosť. Tiež je známe, že parciálna substitúcia Fe2+ iónmi Mn2+,
vedie k lepšej špecifickej kapacite a menšiemu ubytku kapacity. Nb zlepšuje elektrónovú vodivosť
a tiež zlepšuje reverzibilnú kapacitu pri vysokých prúdoch. Substitúcia katiónmi tiež redukuje
polarizáciu. Vysoké hodnoty vodivosti dopovaného fosfo-olivínu sú zapríčinené formáciou
fosfidov na povrchu zŕn, čoho príčinou je parciálna redukcia LiePO4 na Fe2P.
Značne zlepšené vlastnosti majú napr. kompozitné katódy Li1-5xNbxFePO4/C.
Dopovanie LiFePO4 ytriom vedie k pravidelnejšej morfológii.
Povrch LiFePO4/C potiahnutý nanočasticami Sn je odolný voči rozkladu Fe v elektrolyte
založenom na LiPF6.
Odkazy:
References
[1]
M. Armand, J.M. Tarascon
Building better batteries
Nature, 451 (2008), pp. 652-657
CrossRefView Record in ScopusGoogle Scholar
[2]
C. Daniel
Materials and processing for lithium-ion batteries
JOM, 60 (9) (2008), pp. 43-48
CrossRefView Record in ScopusGoogle Scholar
[3]
M.S. Whittingham
Materials challenges facing electrical energy storage
MRS Bull, 33 (4) (2008), pp. 411-419
CrossRefView Record in ScopusGoogle Scholar
[4]
A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, S.J. Yoon
Issue and challenges facing rechargeable thin film lithium batteries
Mater. Res. Bull, 43 (2008), pp. 1913-1942
ArticleDownload PDFView Record in ScopusGoogle Scholar
[5]
J. Hassoun, P. Reale, B. Scrosati
Recent advances in liquid and polymer lithium-ion batteries
J. Mater. Chem, 17 (2007), pp. 3668-3677
CrossRefView Record in ScopusGoogle Scholar
[6]
A.K. Shukla, T.P. Kumar
Materials for next-generation lithium batteries
Curr. Sci, 94 (2008), pp. 314-331
View Record in ScopusGoogle Scholar
[7]
J.M. Tarascon, M. Armaud
Issues and challenges facing rechargeable lithium batteries
Nature, 414 (2001), pp. 359-367
View Record in ScopusGoogle Scholar
[8]
S. Bruno, P. Stefania, R. Priscilla, S. Daniela, A. Yuichi
Investigation of new types of lithium ion battery materials
J. Power Sources, 105 (2) (2002), pp. 161-168
View Record in ScopusGoogle Scholar
[9]
D. Guyomard
Advanced cathode materials for lithium batteries
T. Osaka, M. Datta (Eds.), Energy Storage Systems for Electronics, New Trends in Electrochemical Technology, vol. 1, Gordon and Breach, Amsterdam (2000), pp. 253-350
View Record in ScopusGoogle Scholar
[10]
M.S. Whittingham
Lithium batteries and cathode materials
Chem. Rev, 104 (2004), pp. 4271-4301
View Record in ScopusGoogle Scholar
[11]
E. Antolini
LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties
Solid State Ion, 170 (2004), pp. 159-171
ArticleDownload PDFView Record in ScopusGoogle Scholar
[12]
T. Shiratsuchi, S. Okada, T. Doi, J.I. Yamaki
Cathodic performance of LiMn1−xMxPO4 (M= Ti, Mg, Zr) annealed in an inert atmosphere
Electrochim. Acta, 54 (2009), pp. 3145-3151
ArticleDownload PDFView Record in ScopusGoogle Scholar
[13]
S.W. Kim, J. Kim, H. Gwon, K. Kang
Phase stability study of Li1−xMnPO4 (0≤x≤1) cathode for Li rechargeable battery
J. Electrochem. Soc, 156 (8) (2009), pp. A635-A638
CrossRefView Record in ScopusGoogle Scholar
[14]
A.V. Murugan, T. Muraliganth, A. Manthiram
One-pot microwave hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M= Mn, Fe, and Co) cathodes
J. Electrochem. Soc, 156 (2) (2009), pp. A79-A83
Google Scholar
[15]
N.N. Bramnik, K. Nikolowski, D.M. Trots, H. Ehrenberg
Thermal stability of LiCoPO4 cathodes
Electrochem. Solid-State Lett, 11 (6) (2008), pp. A89-A93
CrossRefView Record in ScopusGoogle Scholar
[16]
J. Molenda, A. Kulka, A.M. Zajac, K. Swierczek
Structural, transport and electrochemical properties of LiFePO4 substituted in lithium and iron sublattices (Al, Zr, W, Mn Co and Ni)
Materials, 6 (2013), pp. 1656-1687
CrossRefView Record in ScopusGoogle Scholar
[17]
P.P. Prosini, D. Zane, M. Pasquali
Improved electrochemical performance of a LiFePO4-based composite cathode
Electrochim. Acta, 46 (2001), pp. 3517-3523
ArticleDownload PDFView Record in ScopusGoogle Scholar
[18]
A.K. Padhi, K.S. Nanjundaswamy, J. Goodenough
Phospho-olivines and positive-electrode materials for rechargeable lithium batteries
J. Electrochem. Soc, 144 (4) (1997), pp. 1188-1194
CrossRefView Record in ScopusGoogle Scholar
[19]
K. Tang, J. Sun, X. Yu, H. Li, X. Huang
Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity
Electrochim. Acta, 54 (2009), p. 6565
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A.A. Salah, A. Mauger, C.M. Julien, F. Gendron
Nano-sized impurity phases in relation to the mode of preparation of LiFePO4
Mater. Sci. Eng. B, 129 (2006), p. 232
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater
Atomic scale investigation of defects, dopants, and lithium transport in a LiFePO4 olivine-type battery material
Chem. Mater, 17 (2005), p. 5085
CrossRefView Record in ScopusGoogle Scholar
[22]
Y.Z. Dong, Y.M. Zhao, Y.H. Chen, Z.F. He, Q. Kuang
Optimized carbon-coated LifePO4 cathode for lithium-ion batteries
Mater. Chem. Phys, 115 (2009), p. 245
ArticleDownload PDFView Record in ScopusGoogle Scholar
[23]
Z.Y. Chen, H.-L. Zhu, S. Ji, R. Fakir, V. Linkov
Influence of carbon sources on electrochemical performances of LiFePO4 composites
Solid State Ion, 179 (2008), p. 1810
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
A. Yamada, S.C. Chung, K. Hinokuma
Optimized LiFePO4 for lithium battery cathodes
J. Electrochem. Soc, 148 (2001), p. A224
View Record in ScopusGoogle Scholar
[25]
T. Qu, Y. Tian, Y. Ding, C. Zhong, Y. Zhai
Optimized synthesis technology of LiFePO4 for Li-ion battery
Trans. Nonferrous Met. Soc. China, 15 (3) (2005), pp. 583-588
View Record in ScopusGoogle Scholar
[26]
K. Ding, W. Li, Q. Wang, S. Wei, Z. Guo
Modified solid-state reaction synthesized cathode lithium iron phosphate (LiFePO4) from different phosphate sources
J. Nanosci. Nanotechnol, 12 (2012), pp. 3812-3820
CrossRefView Record in ScopusGoogle Scholar
[27]
M.N. Rahaman
Ceramic Processing and Sintering
(second ed.), Marcel Dekker, Inc., New York (2003)
Google Scholar
[28]
S. Franger, F. Le Cras, C. Bourbon, H. Rouault
Comparison between different LiFePO4 synthesis routes and their influence on its physicochemical properties
J. Power Sources, 119–121 (2003), pp. 252-257
ArticleDownload PDFView Record in ScopusGoogle Scholar
[29]
H.C. Shin, W.I. Cho, H. Jang
Electrochemical properties of carboncoated LiFePO4 cathode using graphite, carbon black, and acetylene black
Electrochim. Acta, 52 (2006), pp. 1472-1476
ArticleDownload PDFView Record in ScopusGoogle Scholar
[30]
H.C. Shin, W.I. Cho, H. Jang, J.P. Souvern
Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries
(2006), pp. 1383-1389
159
View Record in ScopusGoogle Scholar
[31]
J.K. Kim, G. Cheruvally, J.H. Ahn, G.C. Hwang, J.B. Choi
Electrochemical properties of carbon coated LiFePO4 synthesized by a modified mechanical activation process
J. Phys. Chem. Solids, 69 (2008), pp. 2371-2377
ArticleDownload PDFView Record in ScopusGoogle Scholar
[32]
K.S. Smirnov, V.A. Zhorin, S.E. Smirnov
Study of properties of cathode materials based on lithium-iron phosphate
Inorgnaic Mater. Appl. Res, 5 (2014), pp. 467-470
View Record in ScopusGoogle Scholar
[33]
K.S. Smirnov, V.A. Zhorin, N.A. Yashtulov
Effect of mechanical activation on characteristics of electrodes based on lithium–iron phosphate
Russ. J. Appl. Chem, 86 (4) (2013), pp. 603-605
View Record in ScopusGoogle Scholar
[34]
A.W. Weimer
Carbide, Nitride, and Boride Materials Synthesis and Processing
Chapman & Hall, London, U.K. (1997)
Google Scholar
[35]
U. Schubert, N. Hüsing
Synthesis of Inorganic Materials
(second ed.), Wiley VCH Verlag GmbH & Co., Weinheim, Germany (2005)
Google Scholar
[36]
J. Barker, M.Y. Saidi, J.L. Swoyer
Lithium iron(II) phosphoolivines prepared by a novel carbothermal reduction method
Electrochem. Solid State Lett, 6 (2003), pp. A53-A55
View Record in ScopusGoogle Scholar
[37]
B.Q. Zhu, X.H. Li, Y.X. Wang, H.J. Guo
Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction
Mater. Chem. Phys, 98 (2006), pp. 373-376
ArticleDownload PDFView Record in ScopusGoogle Scholar
[38]
C.H. Mi, G.S. Cao, X.B. Zhao
Low cost, one step process for synthesis of carbon coated LiFePO4 cathode
Mater. Lett, 59 (2005), pp. 127-130
ArticleDownload PDFView Record in ScopusGoogle Scholar
[39]
M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara
Synthesis of LiFePO4 cathode material by microwave processing
J. Power Sources, 119–121 (2003), pp. 258-261
ArticleDownload PDFView Record in ScopusGoogle Scholar
[40]
K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Kim, C.H. Lee, et al.
Synthesis of LiFePO4 by coprecipitation and microwave heating
Electrochem. Commun, 5 (2003), pp. 839-842
ArticleDownload PDFView Record in ScopusGoogle Scholar
[41]
L. Wang, Y. Huang, R. Jiang, D. Jia
Preparation and characterization of nanosized LiFePO4 by low heating solidstate coordination method and microwave heating
Electrochim. Acta, 52 (2007), pp. 6778-6783
ArticleDownload PDFView Record in ScopusGoogle Scholar
[42]
S. Beninati, L. Damen, M. Mastragostino
MW assisted synthesis of LiFePO4 for high power applications
J. Power Sources, 180 (2008), pp. 875-879
ArticleDownload PDFView Record in ScopusGoogle Scholar
[43]
A.V. Murugan, T. Muraliganth, A. Manthiram
Rapid microwave solvothermal synthesis of phosphoolivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries
Electrochem. Commun, 10 (2008), pp. 903-906
Google Scholar
[44]
Y.V. Bykov, K.I. Rybakov, V.E. Semenov
High temperature microwave processing of materials
J. Phys. D Appl. Phys, 34 (2001), pp. R55-R75
View Record in ScopusGoogle Scholar
[45]
W. Li, J. Ying, C. Wan, C. Jiang, J. Gao, C. Tang
Preparation and characterization of LiFePO4 from NH4FePO4⋅H2O under different microwave heating conditions
J. Solid State Electrochem, 11 (6) (2007), pp. 799-803
CrossRefView Record in ScopusGoogle Scholar
[46]
Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, et al.
Onestep microwave synthesis and characterization of carbon modified nanocrystalline LiFePO4
Electrochim. Acta, 54 (11) (2009), pp. 3206-3210
ArticleDownload PDFView Record in ScopusGoogle Scholar
[47]
W.J. Zhang
Structure and performance of LiFePO4 cathode materials: a review
J. Power Sources, 196 (2011), pp. 2962-2970
ArticleDownload PDFView Record in ScopusGoogle Scholar
[48]
M.S. Song, Y.M. Kang, J.H. Kim, H.S. Kim, D.Y. Kim, H.S. Kwon, et al.
Simple and fast synthesis of LiFePO4 /C composite for lithium rechargeable batteries by ballmilling and microwave heating
J. Power Sources, 166 (1) (2007), pp. 260-265
ArticleDownload PDFView Record in ScopusGoogle Scholar
[49]
H. Zou, G. Zhang, P.K. Shen
Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries
Mater. Res. Bull, 45 (2010), pp. 149-152
ArticleDownload PDFView Record in ScopusGoogle Scholar
[50]
M.S. Song, Y.M. Kang, Y.I. Kim, K.S. Park, H.S. Kwon
Nature of insulating phase transition and degradation of structure and electrochemical reactivity in an olivine structured material, LiFePO4
Inorg. Chem, 48 (17) (2009), pp. 8271-8275
CrossRefView Record in ScopusGoogle Scholar
[51]
X.F. Guo, H. Zhan, Y.H. Zhou
Rapid synthesis of LiFePO4/C composite by microwave method
Solid State Ion, 180 (2009), pp. 386-391
ArticleDownload PDFView Record in ScopusGoogle Scholar
[52]
A. Wold, K. Dwight
Solid State Chemistry: Synthesis, Structure, and Properties of Selected Oxides and Sulphides
Chapman & Hall Inc., New York (1993)
Google Scholar
[53]
E.G. Avvakumov, M. Senna, N. Kosova
Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies
Kluwer Academic Publishers, New York (2001)
Google Scholar
[54]
S. Somiya, R. Roy
Hydrothermal synthesis of fine oxide powders
Bull. Mater. Sci, 23 (6) (2000), pp. 453-460
View Record in ScopusGoogle Scholar
[55]
S. Yang, P.Y. Zavalij, M.S. Whittingham
Hydrothermal synthesis of lithium iron phosphate cathodes
Electrochem. Commun, 3 (2001), pp. 505-508
ArticleDownload PDFView Record in ScopusGoogle Scholar
[56]
S. Yang, Y. Song, P.Y. Zavalij, M.S. Whittingham
Reactivity, stability and electrochemical behavior of lithium iron phosphates
Electrochem. Commun, 4 (2002), pp. 239-244
ArticleDownload PDFView Record in ScopusGoogle Scholar
[57]
J. Chen, M.S. Whittingham
Hydrothermal synthesis of lithium iron phosphate
Electrochem. Commun, 8 (2006), pp. 855-858
ArticleDownload PDFView Record in ScopusGoogle Scholar
[58]
J. Chen, S. Wang, M.S. Whittingham
Hydrothermal synthesis of cathode materials
J. Power Sources, 174 (2007), pp. 442-448
ArticleDownload PDFView Record in ScopusGoogle Scholar
[59]
B. Jin, H.B. Gu
Preparation and characterization of LiFePO4 cathode materials by hydrothermal method
Solid State Ion, 178 (2008), pp. 1907-1914
ArticleDownload PDFView Record in ScopusGoogle Scholar
[60]
G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi
Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells
J. Power Sources, 160 (2006), pp. 516-522
ArticleDownload PDFView Record in ScopusGoogle Scholar
[61]
S. Bodoardo, C. Gerbaldi, G. Meligrana, A. Tuel, S. Enzo, N. Penazzi
Optimization of some parameters for preparation of nano structured LiFePO4/C cathode
Ionics, 15 (2009), pp. 19-26
CrossRefView Record in ScopusGoogle Scholar
[62]
X. Ou, G. Liang, L. Wang, S. Xu, X. Zhao
Effects of magnesium doping on electronic conductivity and electrochemical proper ties of LiFePO4 prepared via hydrothermal route
J. Power Sources, 184 (2008), pp. 543-547
ArticleDownload PDFView Record in ScopusGoogle Scholar
[63]
E.M. Jin, B. Jin, D.K. Jun, K.H. Park, H.B. Gu, K.W. Kim
A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method
J. Power Sources, 178 (2008), pp. 801-806
ArticleDownload PDFView Record in ScopusGoogle Scholar
[64]
J. Chen, M.J. Vacchio, S. Wang, N. Chernova, P.Y. Zavalij, M.S. Whittingham
The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications
Solid State Ion, 178 (2008), pp. 1676-1693
ArticleDownload PDFView Record in ScopusGoogle Scholar
[65]
D. Sangeeta, J.R. LaGraff
Inorganic Materials Chemistry Desk Reference
(second ed.), CRC Press, Florida, USA (2005)
Google Scholar
[66]
H.E. Bergna, W.O. Roberts
Colloidal Silica: Fundamentals and Applications
(second ed.), CRC Press, Florida, USA (2006)
Google Scholar
[67]
C.J. Brinker, G.W. Scherer
Solgel Science: The Physics and Chemistry of Solgel Processing
Academic Press Inc., San Diego, CA (1990)
Google Scholar
[68]
L.L. Hench, J.K. West
The SolGel process
Chem. Rev, 90 (1990), p. 3372
View Record in ScopusGoogle Scholar
[69]
K. Rana, A. Sil, S. Ray
Synthesis of ribbon type carbon nanostructure using LiFePO4 catalyst and their electrochemical performance
Mater. Res. Bull, 44 (2009), pp. 2155-2159
ArticleDownload PDFView Record in ScopusGoogle Scholar
[70]
D. Arumugam, G.P. Kalaignan, P. Manisankar
Synthesis and electrochemical characterizations of nanocrystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries
J. Solid State Electrochem, 13 (2009), pp. 301-307
CrossRefView Record in ScopusGoogle Scholar
[71]
R. Dominko, J.M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, et al.
Impact of LiFePO4/C composites porosity on their electro chemical performance
J. Electrochem. Soc, 152 (5) (2005), pp. A858-A863
CrossRefView Record in ScopusGoogle Scholar
[72]
K.F. Hsu, S.Y. Tsay, B.J. Hwang
Physical and electrochemical properties of LiFePO4/carbon composite synthesized at various pyrolysis periods
J. Power Sources, 146 (2005), pp. 529-533
ArticleDownload PDFView Record in ScopusGoogle Scholar
[73]
J. Yang, J.J. Xu
Nonaqueous SolGel synthesis of high performance LiFePO4
Electrochem. Solid-State Lett, 7 (2004), pp. A515-A518
CrossRefView Record in ScopusGoogle Scholar
[74]
Y. Lin, M.X. Gao, D. Zhu, Y.F. Liu, H.G. Pan
Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C
J. Power Sources, 184 (2008), pp. 444-448
ArticleDownload PDFView Record in ScopusGoogle Scholar
[75]
S.J. Lee
Spray combustion synthesis process for the preparations of nanosized ultrafine ceramic powders
Ph.D. thesis; in Materials Science and Engineering, Kyungnam University, South Korea
(2002)
Google Scholar
[76]
J.H. Lee, K.Y. Jung, S.B. Park
Modification of titania particles by ultrasonic spray pyrolysis of colloid
J. Mater. Sci, 34 (1999), pp. 4089-4093
View Record in ScopusGoogle Scholar
[77]
T.H. Teng, M.R. Yang, S.H. Wu, Y.P. Chiang
Electrochemical properties of LiFe0.9Mg0.1PO4/ carbon cathode materials prepared by ultrasonic spray pyrolysis
Solid State Commun, 142 (2007), pp. 389-392
ArticleDownload PDFView Record in ScopusGoogle Scholar
[78]
G.X. Wang, S.L. Bewlay, K. Konstantinov, H.K. Liu, S.X. Dou, J.H. Ahn
Physical and electrochemical properties of doped lithium iron phosphate electrodes
Electrochim. Acta, 50 (2004), pp. 443-447
ArticleDownload PDFView Record in ScopusGoogle Scholar
[79]
S.H. Ju, Y.C. Kang
LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nanosized carbon black
Mater. Chem. Phys, 107 (2008), pp. 328-333
ArticleDownload PDFView Record in ScopusGoogle Scholar
[80]
M.R. Yang, T.H. Teng, S.H. Wu
LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis
J. Power Sources, 159 (2006), pp. 307-311
ArticleDownload PDFView Record in ScopusGoogle Scholar
[81]
J.K. Kim
Supercritical synthesis in combination with a spray process for 3D porous microsphere lithium iron phosphate
CrystEngComm, 16 (2014), pp. 2818-2822
View Record in ScopusGoogle Scholar
[82]
S.L. Bewlay, K. Konstantinov, G.X. Wang, S.X. Dou, H.K. Liu
Conductivity improvements to spray produced LiFePO4 by addition of a carbon source
Mater. Lett, 58 (2004), pp. 1788-1791
ArticleDownload PDFView Record in ScopusGoogle Scholar
[83]
M. Konarova, I. Taniguchi
Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties
Mater. Res. Bull, 43 (2008), pp. 3305-3317
ArticleDownload PDFView Record in ScopusGoogle Scholar
[84]
M. Konarova, I. Taniguchi
Physical and electrochemical properties of LiFePO4 nano particles synthesized by a combination of spray pyrolysis with wet ballmilling
J. Power Sources, 194 (2009), pp. 1029-1035
ArticleDownload PDFView Record in ScopusGoogle Scholar
[85]
M. Konarova, I. Taniguchi
Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball milling followed by heat treatment and their electrochemical properties
Powder Technol, 191 (2009), pp. 111-116
ArticleDownload PDFView Record in ScopusGoogle Scholar
[86]
G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, M. Wohlfahrt Mehrens
LiFePO4 with enhanced performance synthesized by a novel synthetic route
J. Power Sources, 119-121 (2003), pp. 247-251
ArticleDownload PDFView Record in ScopusGoogle Scholar
[87]
J.C. Zheng, X.H. Li, Z.X. Wang, H.J. Guo, S.Y. Zhou
LiFePO4 with enhanced performance synthesized by a novel synthetic route
J. Power Sources, 184 (2008), pp. 574-577
ArticleDownload PDFView Record in ScopusGoogle Scholar
[88]
Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, et al.
Preparation of nanostructured LiFePO4/graphene composites by co-precipitation method
Electrochem. Commun, 12 (2010), pp. 10-13
ArticleDownload PDFView Record in ScopusGoogle Scholar
[89]
L. Li, X. Li, Z. Wang, L. Wu, J. Zheng, H. Guo
Stable cycle life properties of Ti doped LiFePO4 compounds synthesized by co-precipitation and normal temperature reduction method
J. Phys. Chem. Solids, 70 (2009), pp. 238-242
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[90]
C. Huang, D. Ai, L. Wang, X. Hel
Rapid synthesis of LiFePO4 by co-precipitation
Chem. Lett, 42 (10) (2013), pp. 1191-1193
CrossRefView Record in ScopusGoogle Scholar
[91]
Z.R. Chang, H.J. Lv, H.W. Tang, H.J. Li, X.Z. Yuan, H. Wang
Synthesis and characterization of high density LiFePO4/C composites as cathode materials for lithium ion batteries
Electrochim. Acta, 54 (2009), pp. 4595-4599
ArticleDownload PDFView Record in ScopusGoogle Scholar
[92]
D. Jugovic, M. Mitric, N. Cvjeticanin, B. Jancar, S. Mentus, D. Uskoković
Synthesis and characterization of LiFePO4/C composite obtained by sono chemical method
Solid State Ion, 179 (2008), pp. 415-419
ArticleDownload PDFView Record in ScopusGoogle Scholar
[93]
T.H. Cho, H.T. Chung
Synthesis of olivine type LiFePO4 by emulsion drying method
J. Power Sources, 133 (2004), pp. 272-276
ArticleDownload PDFView Record in ScopusGoogle Scholar
[94]
S.T. Myung, S. Komaba, N. Hirosaki, H. Yashiro, N. Kumagai
Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material
Electrochim. Acta, 49 (2004), pp. 4213-4222
ArticleDownload PDFView Record in ScopusGoogle Scholar
[95]
S.T. Myung, H.T. Chung
Preparation and characterization of LiMn2O4 powders by the emulsion drying method
J. Power Sources, 84 (1999), pp. 32-38
ArticleDownload PDFView Record in ScopusGoogle Scholar
[96]
S.T. Myung, N. Kumagai, S. Komaba, H.T. Chung
Preparation and electrochemical characterization of LiCoO2 by the emulsion drying method
J. Appl. Electrochem, 30 (2000), pp. 1081-1085
View Record in ScopusGoogle Scholar
[97]
K. Gotoh, H. Masuda, K. Higashitani
Powder Technology Handbook
(second ed.), Marcel Dekker Inc., New York (1997)
Google Scholar
[98]
A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough
Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates
J. Electrochem. Soc, 144 (5) (1997), pp. 1609-1613
CrossRefView Record in ScopusGoogle Scholar
[99]
Y.C. Chen, J.M. Chen, C.H. Hsu, J.J. Lee, T.C. Lin, J.W. Yeh, et al.
Electrochemical and structural studies of LiCo1/3 Mn1/3 Fe1/3 PO4 as a cathode material for lithium ion batteries
J. Power Sources, 195 (2010), pp. 6867-6872
ArticleDownload PDFView Record in ScopusGoogle Scholar
[100]
N.J. Yun, H.W. Ha, K.H. Jeong, H.Y. Park, K. Kim
Synthesis and electrochemical properties of olivine e-type LiFePO4/C composite cathode material prepared from a poly (vinyl alcohol) containing precursor
J. Power Sources, 160 (2006), p. 1361
ArticleDownload PDFView Record in ScopusGoogle Scholar
[101]
D.G. Zhuang, Z. Xin-Bing, X. Jian, T.U. Jian, Z. Tie-Jun, C. Gao-Shao
One-step solid-state synthesis and electrochemical performance of Nb-doped LiFePO4/C
Acta Phys. Chim. Sin, 22 (7) (2006), pp. 840-844
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[102]
S. Kandhasamy, K. Nallathamby, M. Minakshi
Role of structural defects in olivine cathodes
Prog. Solid State Chem, 40 (2012), pp. 1-5
ArticleDownload PDFView Record in ScopusGoogle Scholar
[103]
H.C. Shin, W.I. Cho, H. Jang
Electrochemical properties of the carbon coated LiFePO4 as a cathode material for lithium-ion secondary batteries
J. Power Sources, 159 (2) (2006), pp. 1383-1388
ArticleDownload PDFView Record in ScopusGoogle Scholar
[104]
A. Ait-Salan, K. Zaghib, A. Mauger, F. Gendron, C.M. Julien
Magnetic studies of the carbon thermal effect on LiFePO4
Phys. Stat. Sol. A, 203 (1) (2006), pp. R1-R3
Google Scholar
[105]
Y.H. Huang, K.S. Park, J.B. Goodenough
Improving lithium batteries by tethering carbon coated LiFePO4 to polypyrrole
J. Electrochem. Soc, 153 (12) (2006), p. A2282
CrossRefView Record in ScopusGoogle Scholar
[106]
I.V. Thorat, V. Mathur, J.N. Harb, D.R. Wheeler
Performance of carbon-filter-containing LiFePO4 cathodes for high power applications
J. Power Sources, 162 (2006), p. 673
ArticleDownload PDFView Record in ScopusGoogle Scholar
[107]
W. Li, J. Gao, J. Ying, C. Wan, C. Jiang
Preparation and characterization of LiFePO4 from a novel precursor of NH4FePO4 H2O
J. Electrochem. Soc, 153 (9) (2006), p. F194
CrossRefView Record in ScopusGoogle Scholar
[108]
C.Z. Lu, G.T.K. Fey, H.M. Kao
Study of LiFePO4 cathode materials coated with high surface area carbon
J. Power Sources, 189 (2009), pp. 155-162
ArticleDownload PDFView Record in ScopusGoogle Scholar
[109]
T. Nakamura, Y. Miwa, M. Tabuchi, Y. Yamada
Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties
J. Electrochem. Soc, 153 (6) (2006), p. A1108
CrossRefView Record in ScopusGoogle Scholar
[110]
Z.R. Chang, H.J. Lv, H.W. Tang, H.J. Li, X.Z. Yuan, H. Wang
Synthesis and characterization of high-density LiFePO4 composites as cathode materials for lithium-ion batteries
Electrochim. Acta, 54 (2009), p. 4595
ArticleDownload PDFView Record in ScopusGoogle Scholar
[111]
C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian
Improved high-rate charge/discharge performances of LiFePO4 via V-doping
J. Power Sources, 193 (2009), p. 841
ArticleDownload PDFView Record in ScopusGoogle Scholar
[112]
X. Huang, X. He, C. Jiang, G. Tian
Influence on power performances of metal oxide additives for LiFePO4 electrodes
Ionics, 20 (11) (2014), pp. 1517-1523
CrossRefView Record in ScopusGoogle Scholar
[113]
B. Hannoyer, A.A.M. Prince, M. Jean, R.S. Liu, G.X. Wang
Mossbauer study on LiFePO4 cathode material for lithium ion batteries
Hyperfine Interact, 167 (2006), p. 767
CrossRefView Record in ScopusGoogle Scholar
[114]
S.H. Wu, M.S. Chen, C.J. Chen, Y.P. Fu
Preparation and characterization of TI4+ – doped LiFePO4 cathode materials for lithium-ion batteries
J. Power Sources, 189 (2009), p. 440
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[115]
S. Raza, M. Sevi
Synthesis and characterization of olivine phosphate cathode material with different particle sizes for rechargeable lithium-ion batteries
Mater. Chem. Phys, 140 (2013), pp. 659-664
Google Scholar
[116]
N. Ravet, Y. Chourinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand
Electroactivity of natural and synthetic triphylite
J. Power Sources, 503 (2001), pp. 97-98
View Record in ScopusGoogle Scholar
[117]
H. Liu, L.J. Fu, H.P. Zhang, J. Gao, C. Li, Y.P. Wu, et al.
Effects of carbon coatings on nanocomposite electrodes for lithium-ion batteries
Electrochem. Solid-State Lett, 9 (12) (2006), p. A529
CrossRefGoogle Scholar
[118]
S.W. Song, R.P. Reade, R. Kostecki, K.A. Striebel
Electrochemical studies of the LiFePO4 thin films prepared with pulsed loser deposition
J. Electrochem. Soc, 153 (1) (2006), pp. A12-A19
CrossRefView Record in ScopusGoogle Scholar
[119]
H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q. Wu
Kinetic study on LiFePO4/C nanocomposite synthesized by solid state technique
J. Power Sources, 159 (2006), p. 717
ArticleDownload PDFView Record in ScopusGoogle Scholar
[120]
S.B. Park, C.K. Park, J.T. Hwang, W.I. Cho, H. Jang
The origin of the residual carbon in LiFePO4 synthesized by wet milling
Bull. Korean Chem. Soc, 32 (2) (2011), pp. 536-540
CrossRefGoogle Scholar
[121]
S.A. Hong, S.J. Kim, J. Kim, B.G. Lee, K.Y. Chung, Y.W. Lee
Carbon coating on lithium iron phosphate (LiFePO4): comparison between continuous supercritical hydrothermal method and solid-state method
Chem. Eng. J., 198–199 (2012), pp. 318-326
ArticleDownload PDFView Record in ScopusGoogle Scholar
[122]
E. Avci
Enhanced cathode performance of nano-sized lithium iron phosphate composite using polytetrafluoroethylene as carbon precursor
J. Power Sources, 270 (2014), pp. 142-150
ArticleDownload PDFView Record in ScopusGoogle Scholar
[123]
X.C. Sun, K. Sun, B. Cui
Surface structure characterization and electrochemical characteristics of carbon-coated lithium iron phosphate (C-LiFePO4) particles
Mater. Res. Soc. Symp. Proc, 1388 (2012)
Google Scholar
[124]
C.Z. Lu, G.T. Kuo Fey, H.M. Kao
Study of LiFePO4 cathode materials coated with high surface area carbon
J. Power Sources, 189 (2009), pp. 155-162
ArticleDownload PDFView Record in ScopusGoogle Scholar
[125]
A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough
Phospho-olivines as positive electrode materials for rechargeable lithium batteries
J. Electrochem. Soc, 144 (4) (1997), p. 1188
CrossRefView Record in ScopusGoogle Scholar
[126]
D.H. Kim, J. Kim
Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties
Electrochem. Solid-State Lett, 9 (9) (2006), p. A439
CrossRefView Record in ScopusGoogle Scholar
[127]
Y. Xia, M. Yoshio, H. Noguchi
Improved electrochemical performance of LiFePO4 by increasing its specific electrochemistry
Electrochim. Acta, 52 (1) (2006), pp. 240-245
ArticleDownload PDFView Record in ScopusGoogle Scholar
[128]
G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi
Hydrothermal synthesis of high surface LiFePO4 powders as cathode for li-ion cells
J. Power Sources, 160 (2006), p. 516
ArticleDownload PDFView Record in ScopusGoogle Scholar
[129]
S. Franger, C. Benoit, C. Bourbon, F. Le Cras
Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries
J. Phys. Chem. Solids, 67 (2006), p. 1338
ArticleDownload PDFView Record in ScopusGoogle Scholar
[130]
A. Odani, A. Nimberger, B. Markovsky, E. Sominski, E. Levi, V.G. Kumar, et al.
Development and testing of nano materials for rechargeable lithium batteries
J. Power Sources, 517 (2003), pp. 119-121
View Record in ScopusGoogle Scholar
[131]
H.C. Wong, J.R. Carey, J.S. Chen
Physical and electrochemical properties of LiFePO4/C composite cathode prepared from aromatic diketone-containing precursors
Int. J. Electrochem. Sci, 5 (2010), pp. 1090-1102
View Record in ScopusGoogle Scholar
[132]
R. Shahid, S. Murugavel
Synthesis and characterization of olivine phosphate cathode material with different particle sizes for rechargeable lithium-ion batteries
Mater. Chem. Phys, 140 (2013), pp. 659-664
ArticleDownload PDFView Record in ScopusGoogle Scholar
[133]
L. Wang, W. Sun, X. Tang, X. Huang, X. He, J. Li, et al.
Nano particles LiFePO4 prepared by solvothermal process
J. Power Sources, 244 (2013), pp. 94-100
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[134]
L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan
Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials
Nano Lett, 12 (11) (2012), pp. 5632-5636
CrossRefView Record in ScopusGoogle Scholar
[135]
X. Huang, X. He, C. Jiang, G. Tian
Morphology evolution and impurity analysis of LiFePO4 nanoparticles via a solvothermal synthesis process
RSC Adv, 4 (99) (2014), pp. 56074-56083
CrossRefView Record in ScopusGoogle Scholar
[136]
S.Y. Chung, J. Bloking, Y.M. Chiang
Electronically conductive phosphor-olivines as lithium storage electrodes
Nat. Mater, 1 (2002), p. 123
CrossRefView Record in ScopusGoogle Scholar
[137]
V. Lemos, S. Guerini, J. Mendes Filho, S.M. Lala, L.A. Montoro, J.M. Rosolen
A new insight into the LiFePO4 delithiation process
Solid State Ion, 177 (2006), p. 1021
ArticleDownload PDFView Record in ScopusGoogle Scholar
[138]
C. Delacourt, C. Wurm, L. Laffont, J.B. Leriche, C. Masquelier
Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4 composites
Solid State Ion, 177 (2006), p. 333
ArticleDownload PDFView Record in ScopusGoogle Scholar
[139]
S.Y. Chung, Y.M. Chiang
Microscale measurements of the electrical conductivity of doped LiFePO4
Electrochem. Solid-State Lett, 6 (12) (2003), pp. A278-A281
View Record in ScopusGoogle Scholar
[140]
Y.L. Ruan
Effect of doping ions on electrochemical properties of LiFePO4 cathode
J. Adv. Mater. Res, 197–198 (2011), pp. 1135-1138
View Record in ScopusGoogle Scholar
[141]
D.Y. Zhang, L. Zhang, P.X. Zhang, M.C. Lin, X.Q. Huang, X.Z. Ren, et al.
Modification of LiFePo4 by citric acid coating and Nb5+ doping
J. Adv. Mater. Res, 158 (2011), pp. 167-173
CrossRefView Record in ScopusGoogle Scholar
[142]
G.X. Wang, S. Bewlay, S.A. Needham, H.K. Liu, R.C. Liu
Synthesis and characterization of LiFePO4 and LiTi0.01Fe0.99PO4 cathode materials
J. Electrochem. Soc, 153 (1) (2006), pp. A25-A31
CrossRefView Record in ScopusGoogle Scholar
[143]
Y.H. Sun, X.Q. Liu
Preparation and characterization of novel Ti-doped M-site deficient olivine LiFePO4
Chin. Chem. Lett, 17 (8) (2006), pp. 1093-1096
View Record in ScopusGoogle Scholar
[144]
O. Fredrick, N.A. Chernova, S. Upreti, P.Y. Zavalij, K.W. Nam, X.Q. Yang, et al.
Can vanadium be substituted into LiFePO4
Chem. Mater, 23 (2011), pp. 4733-4740
Google Scholar
[145]
L.L. Zhang, G. Liang, A. Ignatov, M.C. Croft, X. Xiao-Qin, H. I-Ming, et al.
Effect of vanadium incorporation of electrochemical performance of LiFePO4 for lithium ion batteries
J. Phys. Chem, 115 (2011), pp. 13520-13527
CrossRefView Record in ScopusGoogle Scholar
[146]
C. Ya-Wen, C. Jenn-Shing
A study of electrochemical performance of LiFePO4/C composites doped with Na and V
Int. J. Electrochem. Sci, 7 (2012), pp. 8128-8139
Google Scholar
[147]
M. Wagemaker, B.L. Ellis, D. Lutzenkirchen-Hecht, F.M. Mulder, L.F. Nazar
Proof of supervalent doping in olivine LiFePO4
Chem. Mater, 20 (20) (2008), pp. 6313-6315
CrossRefView Record in ScopusGoogle Scholar
[148]
J. Hong, C.S. Wang, X. Chen, S. Upreti, M.S. Whittingham
Vanadium modified LiFePO4 cathode for li-ion batteries
Electrochem. Solid-State Lett, 12 (2) (2009), pp. A33-A38
CrossRefView Record in ScopusGoogle Scholar
[149]
N. Hua, C. Wang, X. Kang, T. Wumair, Y. Han
Studies of V doping for the LiFePO4-based Li Ion batteries
J. Alloy. Comp, 503 (2010), pp. 204-208
ArticleDownload PDFView Record in ScopusGoogle Scholar
[150]
C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, et al.
Improved high-rate charge/discharge performances of LiFePO4/C via V-doping
J. Power Sources, 193 (2009), pp. 841-845
ArticleDownload PDFView Record in ScopusGoogle Scholar
[151]
T. Yanwen, K. Xiaoxue, L. Liying, X.U. Chaqing, Q.U. Tao
Research on cathode material of Li-ion battery by yttrium doping
J. Rare Earth, 26 (2) (2008), p. 279
View Record in ScopusGoogle Scholar
[152]
S.J. Moon, T. Kouh, C.S. Lee, C.S. Kim
Investigation of microscopic crystal field in co-doped lithium-iron phosphate
IEEE Trans. Magn, 45 (6) (2009), pp. 2584-2586
8
View Record in ScopusGoogle Scholar
[153]
Y. Lin, Y. Lin, T. Zhou, G. Zhao, Y. Huang, Z. Huang
Enhanced electrochemical performances of LiFePO4/C by surface modification with Sn nanoparticles
J. Power Sources, 226 (2013), pp. 20-26
ArticleDownload PDFView Record in ScopusGoogle Scholar
[154]
H. Shu, X. Wang, Q. Wu, B. Hu
Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for Lithium ion batteries
J. Power Sources, 237 (2013), pp. 149-155
ArticleDownload PDFView Record in ScopusGoogle Scholar
[155]
M. Zhao, B. Zhang, G. Huang, H. Zhang, X. Song
Excellent rate capabilities of (LiFePO4/C)//LiV3O8 in an optimized aqueous solution electrolyte
J. Power Sources, 232 (2013), pp. 181-186
ArticleDownload PDFView Record in ScopusGoogle Scholar
[156]
M. Cuisinier, N. Dupre, M. Jean-Frederic, R. Kanno, D. Guyomard
Evolution of the LiFePO4 positive electrode interface along cycling monitored by MAS NMR
J. Power Sources, 224 (2013), pp. 50-58
ArticleDownload PDFView Record in ScopusGoogle Scholar
[157]
J.H. Kim, S.C. Woo, M.S. Park, K.J. Kim, T. Yim, J.S. Kim, et al.
Capacity fading mechanism of LiFePo4 based lithium secondary batteries for stationary energy storage
J. Power Sources, 229 (2013), pp. 190-197
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[158]
J. Wang, Y. Tang, J. Yang, R. Li, G. Liang, X. Sun
Nature of LiFePO4 aging process: roles of impurity phases
J. Power Sources, 238 (2013), pp. 454-463
ArticleDownload PDFView Record in ScopusGoogle Scholar
[159]
T. Ohzuku, A. Ueda
Solid-state redox reaction of LiCoO2 (R3m) for 4 volt secondary lithium cells
J. Electrochem. Soc, 141 (11) (1994), pp. 2677-2972
Google Scholar
[160]
G. Li, Z. Yang, W. Yang
Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries
J. Power Sources, 183 (2008), pp. 741-748
ArticleDownload PDFView Record in ScopusGoogle Scholar
[161]
M. Menetrier, D. Carlier, M. Blangero, C. Delmas
Stoichiometric LiCoO2 can be difficult to obtain on “really” stoichiometric LiCoO2
Electrochem. Solid-State Lett, 11 (11) (2008), pp. A179-A182
CrossRefGoogle Scholar
[162]
Z. Li, D. Zhang, F. Yang
Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material
J. Mater. Sci, 44 (2009), pp. 2435-2443
CrossRefView Record in ScopusGoogle Scholar
[163]
O. Toprakci, H.A.K. Toprakci, L. Ji, Z. Xiangwu
Fabrication and electrochemical characteristics of LiFePO4 powders fir lithium-ion batteries
KONA Powder Part. J., 28 (2010), pp. 50-73
CrossRefView Record in ScopusGoogle Scholar
Prvé lítiové batérie na báze Li/Li+/LixTiS2 boli rýchlo stiahnuté z trhu
okolo r. 1970, kvôli formovaniu dendritov Li, ktoré viedlo k skratu batérie.
V r. 1991 uviedla firma Sony na trh batérie na báze LixC6/Li+/Li1-xCoO2.
Lítiová metalická anóda bola nahradená grafitovou anódou, ktorá má schopnosť
reverzibilne interkalovať Li+ a má výrazne nižší potenciál voči lítiu.
Aby sa zlepšili parametre batérií, bolo nutné zlepšiť materiály katódy.
Katódové materiály sú typicky oxidy a fosfáty rôznych kovov.
Štrukturálna stabilita katódy je dôležitá hlavne počas nabíjania,
keď sa skoro všetko lítium presúva do anódy.
Pri výrobe lítium-iónových batérií, je batéria konštruovaná vo vybitom stave,
ergo ióny lítia sú v katóde a grafitová anóda neobsahuje ióny lítia.
Na rozdiel od iných technológií, kde elektródy reagujú s elektrolytom,
u lítium-iónových batérií, je to presun Li+ a elektrónov.
Interkalačný proces prepieha nasledovne:
Typ: LixC6/Li+/Li1-xMaXb
C6 + xLi+ + xe- <-> LixC6
katóda: Li1MaXb <-> Li1-xMaXb + xLi+ + xe-
Efektivita interkalačného procesu je determinovaná vlastnosťami iónového
a elektrónového transportu materiálov oboch elektród, množstvom miest
dostupných pri Li+ a hustotou dostupných elektronických stavov.
Prúdová hustota tiež závisí na iónovo-elektrónových transportných vlastnostiach
materiálov oboch elektród. V dôsledku toho aj napatie, kapacita, energetická
hustota, prúdová hustota sú definované vlastnosťami materiálov elektród.
Počet nabíjacích cyklov a kalendárna životnosť sú podmienené procesmi,
ktoré prebiehajú na rozhraní elektródy a elektrolytu. Bezpečnosť článkov
závisí na teplotnej a chemickej stabilite materiálov elektród a elektrolytu.
Dotupnosť Li+ na rozhraní povrchu elektród a elektrolytu určuje maximálny
vybíjací prúd.
LiFePO4
Hlavnými interkalačnými oxidmi sú LiCoO2, LiNiO2, LiMnO2 a ich kompozity.
LiCoO2 je drahý a toxický. Čistý LiNiO2 podlieha exotermickej oxidácii elektrolytu
s kolabujúcou delítiovanou štruktúrou LixNiO2. Cyklická a termálna stabilita
LiMn2O4 je tiež limitujúcim faktorom. Potrebujeme katódový materiál, ktorý
je lacnejší, bezpečnejší a výkonnejší ako LiCoO2.
Katódové materiály: / tab 1 /
/ tab 2 /
Dôležitým katódovým materiálom je LiMPO4 / M = Fe, Co, Ni, Mn /. Má olivínovú štruktúru.
Katódy LiMnPO4, LiCoPO4 a LiNiPO4 majú vyššie OCV / 4.1 až 4.8 V / v porovnaní
s LiFePO4 / 3.5 V /. LiFePO4 má reakčný potenciál okolo 3.5 V, má dobrú cyklickú
a termálnu stabilitu, tiež je environmentálne nezávadný.
Štruktúra a charakteristika LiFePO4
LiFePO4 ma dostatočnú reverzibilnú kapacitu okolo 3.5 V ako aj významnú
cyklickú životnsoť, pretože zmeny objemu sú okolo 6.8 %.
V štruktúre LiFePO4, Li má náboj +1, Fe +2 a PO4 -3. Po odstránení Li+,
sa materiál konvertuje na FePO4. Fe a 6 atómov kyslíka tvoria oktohedrálnu štruktúru.
Fe je uprostred. 3D štruktúra je tvorené zdieľanými atómami O. Li+ ležia v oktahedrálnych
kanáloch v cik-cak štruktúre. b = 6.008 Å, a = 10.334 Å, and c = 4.693 Å. Objem: 291.4 Å3.
Hlavnými nevýhodami LiFePO4 je nízka elektrónová vodivosť a nízka Li+ difúzia.
Syntéza LiFePO4
Práškový LiFePO4 je pripravovaný pevnými metódami ako aj metódami založenými na roztokoch.
Solid-state syntéza, mechanochemická aktivácia, uhlíkovotermálna redukcia a mikrovlný ohrev
sú najčastejšími medódami pre prípavu LiFePO4.
Solid-state syntéza prebieha pri vysokých teplotách a tlakoch. Nevýhodou je však neuniformita
častíc v nekryštalickej forme ako aj časová náročnosť procesu. Väčšie častice vedú k horším
elektrochemickým vlastnostiam. LiF, Li2CO3, LiOH.2H2O a CH3COOLi sú zdrojmi lítia,
FeC2O4.2H2O, Fe/CH3COO2/2 a FePO4/H2O/2 sú zdrojmi Fe a NH4H2PO4 a /NH4/2HPO4 sú zdrojmi P.
Produkcia LiFePO4 prášku začína mletím prekurzorov. Potom nastáva peletizácia a kalcinácia.
Prekalcinácia začína pri 250 - 300 *C a druhý krok finálnej kalcinácie je pri 400 - 800 *C.
Teplota vypaľovania má významný vplyv na štruktúru, veľkosť častíc ako aj vybíjaciu kapacitu
LiFePO4. Sintrovanie prebieha vačšinou pri 650 - 700 *C.
Mechanochemická aktivácia sa používa na zvýšenie chemickej reaktivity. Nevýhodami je viac nečistôt
ako aj nárast teploty. Nárast teploty vedie k dekompozícii prekurzorov. Mixtúry sú neskôr
peletizované a kalcinované pri 600 - 900 *C, v atmosfére 95 % Ar a 5 % H2 a N2.
Pri týchto procesoch sa stáva, že FeII začína tvoriť FeIII. Uhlíkovo-termálna redukcia dovoľuje
použiť lacnejšie FeIII zlúčeniny, oproti nestabilným FeII zlúč. Čierny uhlík, grafit a pyrolizované
organické zlúč., sú používané ako redukčný agent. Rýchlosť reakcie závisí od veľkosti častíc,
redukčných prostriedkov, premiešania, koncentrácie plynov atď. Vlastnosti výsledného prášku
závisia na teplote, tlaku, prekurzoroch a redukčných agentoch. Procedúra zahŕňa premiešanie
stechiometrického množstva prekurzorov a redukčných agentov a kalcinácie pri 550 - 850 *C,
v inertnej atmosfére.
Mikrovlnové ohrievanie je ďalšou metódou produkujúcou LiFePO4. Toto ohrievanie prebieha
na molekulárnej úrovni, čo umožňuje volumetrické ohrievanie materiálu absorbovaním energie
mikrovĺn. Stupeň ohrevu je kontrolovaný výkonom žiariča a disipáciou tepla povrchom častíc.
Výhodami metódy sú krátky čas ohrevu, malé množstvo energie a nízka cena. Nie je potrebný
redukujúci plyn. Takto pripravený prášok má častice s malými rozmermi, uniformnú veľkosť
častíc, plynulejšiu povrchovú morfológiu častíc a tým vačšiu vybíjaciu kapacitu.
Ako mikrovlnový absorbér sa používa uhlík. Príprava prebieha vo vzduchu. Dlhšie ohrievanie
spôsobuje vačšie častice, nižší Li difúzny koeficient, ergo významnú stratu kapacity.
Dlho trvajúce ohrievanie tiež spôsobuje vyšší obsah Fe2P. Ak dosiahne Fe2P kritické množstvo,
časť LiFePO4 sa zmení na izolujúci Li4P2O7. Ak je ohrievanie veľmi krátke, tvoria sa kontaminanty,
ktoré zhoršujú vybíjaciu kapacitu.
Pre dosiahnutie lepších výsledkov sa používa aj mokré metódy. Medzi ne patrí hydrotermálna syntéza,
sol-gel syntéza, sprejová pyrolýza, koprecipitácia a mikroemulzia.
Hydrotermálna syntéza je chemický proces, ktorý prebieha pri zahriatí roztoku nad bod varu vody.
Počas procesu zohriata voda akceleruje difúziu častíc a rast kryštálov je rýchly.
Reaktor / autokláv / je environmentálne neškodný. Po zmixovaní prekurzorov v stechiometrickom
pomere sa teplota zvýši na 120 - 220 *C. Ak je nutná karbonizácia, zaradí sa krok kalcinácie
pri 400 - 750 *C. Ako zdroj uhlíka sa používa cukor, askorbová kyselina, MWCNT a organický
surfaktant acetyl trimetyl amónium bromid / CTAB /. Reakčný čas, stupeň ionizácie, veľkosť
častíc a kryštalická štruktúra LiFePO4 sú závislé na teplote.
Sol-gel syntéza je nízkoteplotný mokrý proces, ktorý sa používa na prípravu oxidov kovov.
Vytvorí sa koloidná suspenzia a tá sa zmení na gel. Gel sa vysuší na xerogel. Teplota,
čas, pH, prekurzory, rozpúšťadlá, ich koncentrácia a viskozita determinujú veľkosť častíc,
ich tvar, porozitu atď. Sol-gel syntéza je nízkonákladová a vyznačuje sa vysokou čistotou
častíc, ich uniformnou štruktrou a malými rozmermi častíc. Pomalé zahrievanie produkuje
drsnejšie a menej porézne štruktúry. Rýchle zahrievanie produkuje poréznejšie štruktúry.
Sprejová pyrolýza je ultrasonická metóda, ktorá je veľmi efektívna. Veĺkosť častíc je kontrolovateĹná
v submikrometrovom rozsahu. Kvapky slúžia ako nukleačné centrá a z nich vznikajú kryštalické
a husté partikuly. Takto produkovaný prášok má častice menšie ako 1 um, s veľkým povrchom
a vysokou čistotou. Roztok prekurzorov sa pumpuje do pyrolyzačnej pece okolo 400 - 600 *C.
Zberaný prášok sa potom zahrieva na 700 - 800 *C. Môže sa pridať zdroj uhlíka, aby mali
LiFePo4/C častice väčší povrch.
Koprecipitácia je ďalšou metódou, ktorá vedie k časticiam vysokej čistoty a malých rozmerov.
Koprecipitácia mixtúr prekurzorov je kontrolovaná pH. Sušené prekurzory vytvoria amorfný LiFePO4.
Kryštalický prášok je získaný ďalšou kalcináciou pri 500 - 800 *C pri N2 atmosfére. Častice
majú rozmery od 100 nm do niekoľkých um. Vlastnosti LiFePO4 môžu byť ďalej zlepšené intrudovaním
zdroja C alebo zdroja kovu do koprecipitačného procesu.
LiFePO4 prášok može byť tiež pripravený vysušením mikroemulzie. Tú tvorí voda, olej a emulzifikačný
agent. Začína sa prípravou vodných roztokov prekurzorov v stechiometrickom pomere. Potom je vodná
a hydrokarbónová fáza spolu zmixovaná. Získaná mikroemulzia je sušená pri 300 - 400 *C. V ďalšom
kroku je vysušená emulzia calcinovaná pri 650 - 850 *C pod argónovou atmosférou.
Zlepšenie vlastností LiFePO4
Nízka elektrónová vodivosť LiFePO4 a nízky difúzny koeicient Li+ sú hlavnými nedostatkami,
ktoré limitujú uplatnenie LiFePO4. LiFePO4 má vodivosť 10-9 až 10-10 S.cm-1 a difúzny
koeficient 10-12 až 10-14 cm2.s-1, v závisloti na koncentrácii Li+.
Preskúmanie metód na elimináciu týchto nevýhod je veľmi dôležité.
/ tab 3 /
Existuje niekoľko prístupov:
1, zlepšiť elektrónovú vodivosť potiahnutím častíc uhlíkom alebo využiť disperziu
Cu a Ag do roztokov počas syntézy, prípadne použiť nanočastice Al2O3 a MgO
2, kontrolovať veľkosť častíc, aby sa dosiahli homogénne polykryštalické nano partikuly
LiFePO4 optimalizíciou podmienok syntézy
3, selektívne dopovanie supervalentnými katiónmi voči Li
Potiahnutie častíc uhlíkom viedlo k teoretickým kapacitám 170 mAh g-1 pri izbovej teplote.
Jednou z jeho funkcií je zlepšiť elektrónovú vodivosť. Ďalšou funkciou je zabránenie agregácie
nanočastíc a poskytnutie cesty pre Li+. Je potvrdené, že vodivý uhlík musí byť homogénne
rozptýlený po katóde, aby zlepšil elektrónovú vodivosť. Tiež sa zistilo, že difúzny koef.
je ovplyvnený uhlíkom. Pri syntéze LiFePO4 je čierny uhlík pridaný ako prekurzor.
Potianutie uhlíkom však znižuje volumetrickú energetickú hustotu, preto obsah uhlíka
musí byť optimalizovaný. Preto je kľúčovým nájsť vhodný zdroj uhlíka a vytvoriť lacné
a efektívne fabrikačné procesy.
Pozorovaný úbytok kapacity pri cyklovaní je dôsledkom veľkých častíc, ktoré majú malý povrch
a tým sa znižuje difúzia na LiFePO4/FePO4 interfejse. Ergo, aby sa dosiahli lepšie vlastnosti
katódy, je nutné minimalizovať veľkosť partikúl a dosiahnuť vačší špecifický povrch.
Nanoštruktrovaný materiál je benefitom, najmä ak potrebujeme dosiahnuť prúdy 5C.
Nanočastice tiež zlepšujú kinetiku Li+, pretože redukujú difúznu vzdialenosť.
Vlastnosti katódy možu byť zlepšené dopovaním iónmi Mg2+, Al3+, Ti4+, Zr4+ a Nb5+, čím sa
dosahuje lepšia elektrónová vodivosť. Tiež je známe, že parciálna substitúcia Fe2+ iónmi Mn2+,
vedie k lepšej špecifickej kapacite a menšiemu ubytku kapacity. Nb zlepšuje elektrónovú vodivosť
a tiež zlepšuje reverzibilnú kapacitu pri vysokých prúdoch. Substitúcia katiónmi tiež redukuje
polarizáciu. Vysoké hodnoty vodivosti dopovaného fosfo-olivínu sú zapríčinené formáciou
fosfidov na povrchu zŕn, čoho príčinou je parciálna redukcia LiePO4 na Fe2P.
Značne zlepšené vlastnosti majú napr. kompozitné katódy Li1-5xNbxFePO4/C.
Dopovanie LiFePO4 ytriom vedie k pravidelnejšej morfológii.
Povrch LiFePO4/C potiahnutý nanočasticami Sn je odolný voči rozkladu Fe v elektrolyte
založenom na LiPF6.
Odkazy:
References
[1]
M. Armand, J.M. Tarascon
Building better batteries
Nature, 451 (2008), pp. 652-657
CrossRefView Record in ScopusGoogle Scholar
[2]
C. Daniel
Materials and processing for lithium-ion batteries
JOM, 60 (9) (2008), pp. 43-48
CrossRefView Record in ScopusGoogle Scholar
[3]
M.S. Whittingham
Materials challenges facing electrical energy storage
MRS Bull, 33 (4) (2008), pp. 411-419
CrossRefView Record in ScopusGoogle Scholar
[4]
A. Patil, V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, S.J. Yoon
Issue and challenges facing rechargeable thin film lithium batteries
Mater. Res. Bull, 43 (2008), pp. 1913-1942
ArticleDownload PDFView Record in ScopusGoogle Scholar
[5]
J. Hassoun, P. Reale, B. Scrosati
Recent advances in liquid and polymer lithium-ion batteries
J. Mater. Chem, 17 (2007), pp. 3668-3677
CrossRefView Record in ScopusGoogle Scholar
[6]
A.K. Shukla, T.P. Kumar
Materials for next-generation lithium batteries
Curr. Sci, 94 (2008), pp. 314-331
View Record in ScopusGoogle Scholar
[7]
J.M. Tarascon, M. Armaud
Issues and challenges facing rechargeable lithium batteries
Nature, 414 (2001), pp. 359-367
View Record in ScopusGoogle Scholar
[8]
S. Bruno, P. Stefania, R. Priscilla, S. Daniela, A. Yuichi
Investigation of new types of lithium ion battery materials
J. Power Sources, 105 (2) (2002), pp. 161-168
View Record in ScopusGoogle Scholar
[9]
D. Guyomard
Advanced cathode materials for lithium batteries
T. Osaka, M. Datta (Eds.), Energy Storage Systems for Electronics, New Trends in Electrochemical Technology, vol. 1, Gordon and Breach, Amsterdam (2000), pp. 253-350
View Record in ScopusGoogle Scholar
[10]
M.S. Whittingham
Lithium batteries and cathode materials
Chem. Rev, 104 (2004), pp. 4271-4301
View Record in ScopusGoogle Scholar
[11]
E. Antolini
LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties
Solid State Ion, 170 (2004), pp. 159-171
ArticleDownload PDFView Record in ScopusGoogle Scholar
[12]
T. Shiratsuchi, S. Okada, T. Doi, J.I. Yamaki
Cathodic performance of LiMn1−xMxPO4 (M= Ti, Mg, Zr) annealed in an inert atmosphere
Electrochim. Acta, 54 (2009), pp. 3145-3151
ArticleDownload PDFView Record in ScopusGoogle Scholar
[13]
S.W. Kim, J. Kim, H. Gwon, K. Kang
Phase stability study of Li1−xMnPO4 (0≤x≤1) cathode for Li rechargeable battery
J. Electrochem. Soc, 156 (8) (2009), pp. A635-A638
CrossRefView Record in ScopusGoogle Scholar
[14]
A.V. Murugan, T. Muraliganth, A. Manthiram
One-pot microwave hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M= Mn, Fe, and Co) cathodes
J. Electrochem. Soc, 156 (2) (2009), pp. A79-A83
Google Scholar
[15]
N.N. Bramnik, K. Nikolowski, D.M. Trots, H. Ehrenberg
Thermal stability of LiCoPO4 cathodes
Electrochem. Solid-State Lett, 11 (6) (2008), pp. A89-A93
CrossRefView Record in ScopusGoogle Scholar
[16]
J. Molenda, A. Kulka, A.M. Zajac, K. Swierczek
Structural, transport and electrochemical properties of LiFePO4 substituted in lithium and iron sublattices (Al, Zr, W, Mn Co and Ni)
Materials, 6 (2013), pp. 1656-1687
CrossRefView Record in ScopusGoogle Scholar
[17]
P.P. Prosini, D. Zane, M. Pasquali
Improved electrochemical performance of a LiFePO4-based composite cathode
Electrochim. Acta, 46 (2001), pp. 3517-3523
ArticleDownload PDFView Record in ScopusGoogle Scholar
[18]
A.K. Padhi, K.S. Nanjundaswamy, J. Goodenough
Phospho-olivines and positive-electrode materials for rechargeable lithium batteries
J. Electrochem. Soc, 144 (4) (1997), pp. 1188-1194
CrossRefView Record in ScopusGoogle Scholar
[19]
K. Tang, J. Sun, X. Yu, H. Li, X. Huang
Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity
Electrochim. Acta, 54 (2009), p. 6565
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A.A. Salah, A. Mauger, C.M. Julien, F. Gendron
Nano-sized impurity phases in relation to the mode of preparation of LiFePO4
Mater. Sci. Eng. B, 129 (2006), p. 232
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater
Atomic scale investigation of defects, dopants, and lithium transport in a LiFePO4 olivine-type battery material
Chem. Mater, 17 (2005), p. 5085
CrossRefView Record in ScopusGoogle Scholar
[22]
Y.Z. Dong, Y.M. Zhao, Y.H. Chen, Z.F. He, Q. Kuang
Optimized carbon-coated LifePO4 cathode for lithium-ion batteries
Mater. Chem. Phys, 115 (2009), p. 245
ArticleDownload PDFView Record in ScopusGoogle Scholar
[23]
Z.Y. Chen, H.-L. Zhu, S. Ji, R. Fakir, V. Linkov
Influence of carbon sources on electrochemical performances of LiFePO4 composites
Solid State Ion, 179 (2008), p. 1810
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
A. Yamada, S.C. Chung, K. Hinokuma
Optimized LiFePO4 for lithium battery cathodes
J. Electrochem. Soc, 148 (2001), p. A224
View Record in ScopusGoogle Scholar
[25]
T. Qu, Y. Tian, Y. Ding, C. Zhong, Y. Zhai
Optimized synthesis technology of LiFePO4 for Li-ion battery
Trans. Nonferrous Met. Soc. China, 15 (3) (2005), pp. 583-588
View Record in ScopusGoogle Scholar
[26]
K. Ding, W. Li, Q. Wang, S. Wei, Z. Guo
Modified solid-state reaction synthesized cathode lithium iron phosphate (LiFePO4) from different phosphate sources
J. Nanosci. Nanotechnol, 12 (2012), pp. 3812-3820
CrossRefView Record in ScopusGoogle Scholar
[27]
M.N. Rahaman
Ceramic Processing and Sintering
(second ed.), Marcel Dekker, Inc., New York (2003)
Google Scholar
[28]
S. Franger, F. Le Cras, C. Bourbon, H. Rouault
Comparison between different LiFePO4 synthesis routes and their influence on its physicochemical properties
J. Power Sources, 119–121 (2003), pp. 252-257
ArticleDownload PDFView Record in ScopusGoogle Scholar
[29]
H.C. Shin, W.I. Cho, H. Jang
Electrochemical properties of carboncoated LiFePO4 cathode using graphite, carbon black, and acetylene black
Electrochim. Acta, 52 (2006), pp. 1472-1476
ArticleDownload PDFView Record in ScopusGoogle Scholar
[30]
H.C. Shin, W.I. Cho, H. Jang, J.P. Souvern
Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries
(2006), pp. 1383-1389
159
View Record in ScopusGoogle Scholar
[31]
J.K. Kim, G. Cheruvally, J.H. Ahn, G.C. Hwang, J.B. Choi
Electrochemical properties of carbon coated LiFePO4 synthesized by a modified mechanical activation process
J. Phys. Chem. Solids, 69 (2008), pp. 2371-2377
ArticleDownload PDFView Record in ScopusGoogle Scholar
[32]
K.S. Smirnov, V.A. Zhorin, S.E. Smirnov
Study of properties of cathode materials based on lithium-iron phosphate
Inorgnaic Mater. Appl. Res, 5 (2014), pp. 467-470
View Record in ScopusGoogle Scholar
[33]
K.S. Smirnov, V.A. Zhorin, N.A. Yashtulov
Effect of mechanical activation on characteristics of electrodes based on lithium–iron phosphate
Russ. J. Appl. Chem, 86 (4) (2013), pp. 603-605
View Record in ScopusGoogle Scholar
[34]
A.W. Weimer
Carbide, Nitride, and Boride Materials Synthesis and Processing
Chapman & Hall, London, U.K. (1997)
Google Scholar
[35]
U. Schubert, N. Hüsing
Synthesis of Inorganic Materials
(second ed.), Wiley VCH Verlag GmbH & Co., Weinheim, Germany (2005)
Google Scholar
[36]
J. Barker, M.Y. Saidi, J.L. Swoyer
Lithium iron(II) phosphoolivines prepared by a novel carbothermal reduction method
Electrochem. Solid State Lett, 6 (2003), pp. A53-A55
View Record in ScopusGoogle Scholar
[37]
B.Q. Zhu, X.H. Li, Y.X. Wang, H.J. Guo
Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction
Mater. Chem. Phys, 98 (2006), pp. 373-376
ArticleDownload PDFView Record in ScopusGoogle Scholar
[38]
C.H. Mi, G.S. Cao, X.B. Zhao
Low cost, one step process for synthesis of carbon coated LiFePO4 cathode
Mater. Lett, 59 (2005), pp. 127-130
ArticleDownload PDFView Record in ScopusGoogle Scholar
[39]
M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara
Synthesis of LiFePO4 cathode material by microwave processing
J. Power Sources, 119–121 (2003), pp. 258-261
ArticleDownload PDFView Record in ScopusGoogle Scholar
[40]
K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Kim, C.H. Lee, et al.
Synthesis of LiFePO4 by coprecipitation and microwave heating
Electrochem. Commun, 5 (2003), pp. 839-842
ArticleDownload PDFView Record in ScopusGoogle Scholar
[41]
L. Wang, Y. Huang, R. Jiang, D. Jia
Preparation and characterization of nanosized LiFePO4 by low heating solidstate coordination method and microwave heating
Electrochim. Acta, 52 (2007), pp. 6778-6783
ArticleDownload PDFView Record in ScopusGoogle Scholar
[42]
S. Beninati, L. Damen, M. Mastragostino
MW assisted synthesis of LiFePO4 for high power applications
J. Power Sources, 180 (2008), pp. 875-879
ArticleDownload PDFView Record in ScopusGoogle Scholar
[43]
A.V. Murugan, T. Muraliganth, A. Manthiram
Rapid microwave solvothermal synthesis of phosphoolivine nanorods and their coating with a mixed conducting polymer for lithium ion batteries
Electrochem. Commun, 10 (2008), pp. 903-906
Google Scholar
[44]
Y.V. Bykov, K.I. Rybakov, V.E. Semenov
High temperature microwave processing of materials
J. Phys. D Appl. Phys, 34 (2001), pp. R55-R75
View Record in ScopusGoogle Scholar
[45]
W. Li, J. Ying, C. Wan, C. Jiang, J. Gao, C. Tang
Preparation and characterization of LiFePO4 from NH4FePO4⋅H2O under different microwave heating conditions
J. Solid State Electrochem, 11 (6) (2007), pp. 799-803
CrossRefView Record in ScopusGoogle Scholar
[46]
Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, et al.
Onestep microwave synthesis and characterization of carbon modified nanocrystalline LiFePO4
Electrochim. Acta, 54 (11) (2009), pp. 3206-3210
ArticleDownload PDFView Record in ScopusGoogle Scholar
[47]
W.J. Zhang
Structure and performance of LiFePO4 cathode materials: a review
J. Power Sources, 196 (2011), pp. 2962-2970
ArticleDownload PDFView Record in ScopusGoogle Scholar
[48]
M.S. Song, Y.M. Kang, J.H. Kim, H.S. Kim, D.Y. Kim, H.S. Kwon, et al.
Simple and fast synthesis of LiFePO4 /C composite for lithium rechargeable batteries by ballmilling and microwave heating
J. Power Sources, 166 (1) (2007), pp. 260-265
ArticleDownload PDFView Record in ScopusGoogle Scholar
[49]
H. Zou, G. Zhang, P.K. Shen
Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries
Mater. Res. Bull, 45 (2010), pp. 149-152
ArticleDownload PDFView Record in ScopusGoogle Scholar
[50]
M.S. Song, Y.M. Kang, Y.I. Kim, K.S. Park, H.S. Kwon
Nature of insulating phase transition and degradation of structure and electrochemical reactivity in an olivine structured material, LiFePO4
Inorg. Chem, 48 (17) (2009), pp. 8271-8275
CrossRefView Record in ScopusGoogle Scholar
[51]
X.F. Guo, H. Zhan, Y.H. Zhou
Rapid synthesis of LiFePO4/C composite by microwave method
Solid State Ion, 180 (2009), pp. 386-391
ArticleDownload PDFView Record in ScopusGoogle Scholar
[52]
A. Wold, K. Dwight
Solid State Chemistry: Synthesis, Structure, and Properties of Selected Oxides and Sulphides
Chapman & Hall Inc., New York (1993)
Google Scholar
[53]
E.G. Avvakumov, M. Senna, N. Kosova
Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies
Kluwer Academic Publishers, New York (2001)
Google Scholar
[54]
S. Somiya, R. Roy
Hydrothermal synthesis of fine oxide powders
Bull. Mater. Sci, 23 (6) (2000), pp. 453-460
View Record in ScopusGoogle Scholar
[55]
S. Yang, P.Y. Zavalij, M.S. Whittingham
Hydrothermal synthesis of lithium iron phosphate cathodes
Electrochem. Commun, 3 (2001), pp. 505-508
ArticleDownload PDFView Record in ScopusGoogle Scholar
[56]
S. Yang, Y. Song, P.Y. Zavalij, M.S. Whittingham
Reactivity, stability and electrochemical behavior of lithium iron phosphates
Electrochem. Commun, 4 (2002), pp. 239-244
ArticleDownload PDFView Record in ScopusGoogle Scholar
[57]
J. Chen, M.S. Whittingham
Hydrothermal synthesis of lithium iron phosphate
Electrochem. Commun, 8 (2006), pp. 855-858
ArticleDownload PDFView Record in ScopusGoogle Scholar
[58]
J. Chen, S. Wang, M.S. Whittingham
Hydrothermal synthesis of cathode materials
J. Power Sources, 174 (2007), pp. 442-448
ArticleDownload PDFView Record in ScopusGoogle Scholar
[59]
B. Jin, H.B. Gu
Preparation and characterization of LiFePO4 cathode materials by hydrothermal method
Solid State Ion, 178 (2008), pp. 1907-1914
ArticleDownload PDFView Record in ScopusGoogle Scholar
[60]
G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi
Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells
J. Power Sources, 160 (2006), pp. 516-522
ArticleDownload PDFView Record in ScopusGoogle Scholar
[61]
S. Bodoardo, C. Gerbaldi, G. Meligrana, A. Tuel, S. Enzo, N. Penazzi
Optimization of some parameters for preparation of nano structured LiFePO4/C cathode
Ionics, 15 (2009), pp. 19-26
CrossRefView Record in ScopusGoogle Scholar
[62]
X. Ou, G. Liang, L. Wang, S. Xu, X. Zhao
Effects of magnesium doping on electronic conductivity and electrochemical proper ties of LiFePO4 prepared via hydrothermal route
J. Power Sources, 184 (2008), pp. 543-547
ArticleDownload PDFView Record in ScopusGoogle Scholar
[63]
E.M. Jin, B. Jin, D.K. Jun, K.H. Park, H.B. Gu, K.W. Kim
A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method
J. Power Sources, 178 (2008), pp. 801-806
ArticleDownload PDFView Record in ScopusGoogle Scholar
[64]
J. Chen, M.J. Vacchio, S. Wang, N. Chernova, P.Y. Zavalij, M.S. Whittingham
The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications
Solid State Ion, 178 (2008), pp. 1676-1693
ArticleDownload PDFView Record in ScopusGoogle Scholar
[65]
D. Sangeeta, J.R. LaGraff
Inorganic Materials Chemistry Desk Reference
(second ed.), CRC Press, Florida, USA (2005)
Google Scholar
[66]
H.E. Bergna, W.O. Roberts
Colloidal Silica: Fundamentals and Applications
(second ed.), CRC Press, Florida, USA (2006)
Google Scholar
[67]
C.J. Brinker, G.W. Scherer
Solgel Science: The Physics and Chemistry of Solgel Processing
Academic Press Inc., San Diego, CA (1990)
Google Scholar
[68]
L.L. Hench, J.K. West
The SolGel process
Chem. Rev, 90 (1990), p. 3372
View Record in ScopusGoogle Scholar
[69]
K. Rana, A. Sil, S. Ray
Synthesis of ribbon type carbon nanostructure using LiFePO4 catalyst and their electrochemical performance
Mater. Res. Bull, 44 (2009), pp. 2155-2159
ArticleDownload PDFView Record in ScopusGoogle Scholar
[70]
D. Arumugam, G.P. Kalaignan, P. Manisankar
Synthesis and electrochemical characterizations of nanocrystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries
J. Solid State Electrochem, 13 (2009), pp. 301-307
CrossRefView Record in ScopusGoogle Scholar
[71]
R. Dominko, J.M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, et al.
Impact of LiFePO4/C composites porosity on their electro chemical performance
J. Electrochem. Soc, 152 (5) (2005), pp. A858-A863
CrossRefView Record in ScopusGoogle Scholar
[72]
K.F. Hsu, S.Y. Tsay, B.J. Hwang
Physical and electrochemical properties of LiFePO4/carbon composite synthesized at various pyrolysis periods
J. Power Sources, 146 (2005), pp. 529-533
ArticleDownload PDFView Record in ScopusGoogle Scholar
[73]
J. Yang, J.J. Xu
Nonaqueous SolGel synthesis of high performance LiFePO4
Electrochem. Solid-State Lett, 7 (2004), pp. A515-A518
CrossRefView Record in ScopusGoogle Scholar
[74]
Y. Lin, M.X. Gao, D. Zhu, Y.F. Liu, H.G. Pan
Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C
J. Power Sources, 184 (2008), pp. 444-448
ArticleDownload PDFView Record in ScopusGoogle Scholar
[75]
S.J. Lee
Spray combustion synthesis process for the preparations of nanosized ultrafine ceramic powders
Ph.D. thesis; in Materials Science and Engineering, Kyungnam University, South Korea
(2002)
Google Scholar
[76]
J.H. Lee, K.Y. Jung, S.B. Park
Modification of titania particles by ultrasonic spray pyrolysis of colloid
J. Mater. Sci, 34 (1999), pp. 4089-4093
View Record in ScopusGoogle Scholar
[77]
T.H. Teng, M.R. Yang, S.H. Wu, Y.P. Chiang
Electrochemical properties of LiFe0.9Mg0.1PO4/ carbon cathode materials prepared by ultrasonic spray pyrolysis
Solid State Commun, 142 (2007), pp. 389-392
ArticleDownload PDFView Record in ScopusGoogle Scholar
[78]
G.X. Wang, S.L. Bewlay, K. Konstantinov, H.K. Liu, S.X. Dou, J.H. Ahn
Physical and electrochemical properties of doped lithium iron phosphate electrodes
Electrochim. Acta, 50 (2004), pp. 443-447
ArticleDownload PDFView Record in ScopusGoogle Scholar
[79]
S.H. Ju, Y.C. Kang
LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nanosized carbon black
Mater. Chem. Phys, 107 (2008), pp. 328-333
ArticleDownload PDFView Record in ScopusGoogle Scholar
[80]
M.R. Yang, T.H. Teng, S.H. Wu
LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis
J. Power Sources, 159 (2006), pp. 307-311
ArticleDownload PDFView Record in ScopusGoogle Scholar
[81]
J.K. Kim
Supercritical synthesis in combination with a spray process for 3D porous microsphere lithium iron phosphate
CrystEngComm, 16 (2014), pp. 2818-2822
View Record in ScopusGoogle Scholar
[82]
S.L. Bewlay, K. Konstantinov, G.X. Wang, S.X. Dou, H.K. Liu
Conductivity improvements to spray produced LiFePO4 by addition of a carbon source
Mater. Lett, 58 (2004), pp. 1788-1791
ArticleDownload PDFView Record in ScopusGoogle Scholar
[83]
M. Konarova, I. Taniguchi
Preparation of LiFePO4/C composite powders by ultrasonic spray pyrolysis followed by heat treatment and their electrochemical properties
Mater. Res. Bull, 43 (2008), pp. 3305-3317
ArticleDownload PDFView Record in ScopusGoogle Scholar
[84]
M. Konarova, I. Taniguchi
Physical and electrochemical properties of LiFePO4 nano particles synthesized by a combination of spray pyrolysis with wet ballmilling
J. Power Sources, 194 (2009), pp. 1029-1035
ArticleDownload PDFView Record in ScopusGoogle Scholar
[85]
M. Konarova, I. Taniguchi
Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball milling followed by heat treatment and their electrochemical properties
Powder Technol, 191 (2009), pp. 111-116
ArticleDownload PDFView Record in ScopusGoogle Scholar
[86]
G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Vogler, M. Wohlfahrt Mehrens
LiFePO4 with enhanced performance synthesized by a novel synthetic route
J. Power Sources, 119-121 (2003), pp. 247-251
ArticleDownload PDFView Record in ScopusGoogle Scholar
[87]
J.C. Zheng, X.H. Li, Z.X. Wang, H.J. Guo, S.Y. Zhou
LiFePO4 with enhanced performance synthesized by a novel synthetic route
J. Power Sources, 184 (2008), pp. 574-577
ArticleDownload PDFView Record in ScopusGoogle Scholar
[88]
Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, et al.
Preparation of nanostructured LiFePO4/graphene composites by co-precipitation method
Electrochem. Commun, 12 (2010), pp. 10-13
ArticleDownload PDFView Record in ScopusGoogle Scholar
[89]
L. Li, X. Li, Z. Wang, L. Wu, J. Zheng, H. Guo
Stable cycle life properties of Ti doped LiFePO4 compounds synthesized by co-precipitation and normal temperature reduction method
J. Phys. Chem. Solids, 70 (2009), pp. 238-242
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[90]
C. Huang, D. Ai, L. Wang, X. Hel
Rapid synthesis of LiFePO4 by co-precipitation
Chem. Lett, 42 (10) (2013), pp. 1191-1193
CrossRefView Record in ScopusGoogle Scholar
[91]
Z.R. Chang, H.J. Lv, H.W. Tang, H.J. Li, X.Z. Yuan, H. Wang
Synthesis and characterization of high density LiFePO4/C composites as cathode materials for lithium ion batteries
Electrochim. Acta, 54 (2009), pp. 4595-4599
ArticleDownload PDFView Record in ScopusGoogle Scholar
[92]
D. Jugovic, M. Mitric, N. Cvjeticanin, B. Jancar, S. Mentus, D. Uskoković
Synthesis and characterization of LiFePO4/C composite obtained by sono chemical method
Solid State Ion, 179 (2008), pp. 415-419
ArticleDownload PDFView Record in ScopusGoogle Scholar
[93]
T.H. Cho, H.T. Chung
Synthesis of olivine type LiFePO4 by emulsion drying method
J. Power Sources, 133 (2004), pp. 272-276
ArticleDownload PDFView Record in ScopusGoogle Scholar
[94]
S.T. Myung, S. Komaba, N. Hirosaki, H. Yashiro, N. Kumagai
Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material
Electrochim. Acta, 49 (2004), pp. 4213-4222
ArticleDownload PDFView Record in ScopusGoogle Scholar
[95]
S.T. Myung, H.T. Chung
Preparation and characterization of LiMn2O4 powders by the emulsion drying method
J. Power Sources, 84 (1999), pp. 32-38
ArticleDownload PDFView Record in ScopusGoogle Scholar
[96]
S.T. Myung, N. Kumagai, S. Komaba, H.T. Chung
Preparation and electrochemical characterization of LiCoO2 by the emulsion drying method
J. Appl. Electrochem, 30 (2000), pp. 1081-1085
View Record in ScopusGoogle Scholar
[97]
K. Gotoh, H. Masuda, K. Higashitani
Powder Technology Handbook
(second ed.), Marcel Dekker Inc., New York (1997)
Google Scholar
[98]
A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough
Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates
J. Electrochem. Soc, 144 (5) (1997), pp. 1609-1613
CrossRefView Record in ScopusGoogle Scholar
[99]
Y.C. Chen, J.M. Chen, C.H. Hsu, J.J. Lee, T.C. Lin, J.W. Yeh, et al.
Electrochemical and structural studies of LiCo1/3 Mn1/3 Fe1/3 PO4 as a cathode material for lithium ion batteries
J. Power Sources, 195 (2010), pp. 6867-6872
ArticleDownload PDFView Record in ScopusGoogle Scholar
[100]
N.J. Yun, H.W. Ha, K.H. Jeong, H.Y. Park, K. Kim
Synthesis and electrochemical properties of olivine e-type LiFePO4/C composite cathode material prepared from a poly (vinyl alcohol) containing precursor
J. Power Sources, 160 (2006), p. 1361
ArticleDownload PDFView Record in ScopusGoogle Scholar
[101]
D.G. Zhuang, Z. Xin-Bing, X. Jian, T.U. Jian, Z. Tie-Jun, C. Gao-Shao
One-step solid-state synthesis and electrochemical performance of Nb-doped LiFePO4/C
Acta Phys. Chim. Sin, 22 (7) (2006), pp. 840-844
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[102]
S. Kandhasamy, K. Nallathamby, M. Minakshi
Role of structural defects in olivine cathodes
Prog. Solid State Chem, 40 (2012), pp. 1-5
ArticleDownload PDFView Record in ScopusGoogle Scholar
[103]
H.C. Shin, W.I. Cho, H. Jang
Electrochemical properties of the carbon coated LiFePO4 as a cathode material for lithium-ion secondary batteries
J. Power Sources, 159 (2) (2006), pp. 1383-1388
ArticleDownload PDFView Record in ScopusGoogle Scholar
[104]
A. Ait-Salan, K. Zaghib, A. Mauger, F. Gendron, C.M. Julien
Magnetic studies of the carbon thermal effect on LiFePO4
Phys. Stat. Sol. A, 203 (1) (2006), pp. R1-R3
Google Scholar
[105]
Y.H. Huang, K.S. Park, J.B. Goodenough
Improving lithium batteries by tethering carbon coated LiFePO4 to polypyrrole
J. Electrochem. Soc, 153 (12) (2006), p. A2282
CrossRefView Record in ScopusGoogle Scholar
[106]
I.V. Thorat, V. Mathur, J.N. Harb, D.R. Wheeler
Performance of carbon-filter-containing LiFePO4 cathodes for high power applications
J. Power Sources, 162 (2006), p. 673
ArticleDownload PDFView Record in ScopusGoogle Scholar
[107]
W. Li, J. Gao, J. Ying, C. Wan, C. Jiang
Preparation and characterization of LiFePO4 from a novel precursor of NH4FePO4 H2O
J. Electrochem. Soc, 153 (9) (2006), p. F194
CrossRefView Record in ScopusGoogle Scholar
[108]
C.Z. Lu, G.T.K. Fey, H.M. Kao
Study of LiFePO4 cathode materials coated with high surface area carbon
J. Power Sources, 189 (2009), pp. 155-162
ArticleDownload PDFView Record in ScopusGoogle Scholar
[109]
T. Nakamura, Y. Miwa, M. Tabuchi, Y. Yamada
Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties
J. Electrochem. Soc, 153 (6) (2006), p. A1108
CrossRefView Record in ScopusGoogle Scholar
[110]
Z.R. Chang, H.J. Lv, H.W. Tang, H.J. Li, X.Z. Yuan, H. Wang
Synthesis and characterization of high-density LiFePO4 composites as cathode materials for lithium-ion batteries
Electrochim. Acta, 54 (2009), p. 4595
ArticleDownload PDFView Record in ScopusGoogle Scholar
[111]
C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian
Improved high-rate charge/discharge performances of LiFePO4 via V-doping
J. Power Sources, 193 (2009), p. 841
ArticleDownload PDFView Record in ScopusGoogle Scholar
[112]
X. Huang, X. He, C. Jiang, G. Tian
Influence on power performances of metal oxide additives for LiFePO4 electrodes
Ionics, 20 (11) (2014), pp. 1517-1523
CrossRefView Record in ScopusGoogle Scholar
[113]
B. Hannoyer, A.A.M. Prince, M. Jean, R.S. Liu, G.X. Wang
Mossbauer study on LiFePO4 cathode material for lithium ion batteries
Hyperfine Interact, 167 (2006), p. 767
CrossRefView Record in ScopusGoogle Scholar
[114]
S.H. Wu, M.S. Chen, C.J. Chen, Y.P. Fu
Preparation and characterization of TI4+ – doped LiFePO4 cathode materials for lithium-ion batteries
J. Power Sources, 189 (2009), p. 440
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[115]
S. Raza, M. Sevi
Synthesis and characterization of olivine phosphate cathode material with different particle sizes for rechargeable lithium-ion batteries
Mater. Chem. Phys, 140 (2013), pp. 659-664
Google Scholar
[116]
N. Ravet, Y. Chourinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand
Electroactivity of natural and synthetic triphylite
J. Power Sources, 503 (2001), pp. 97-98
View Record in ScopusGoogle Scholar
[117]
H. Liu, L.J. Fu, H.P. Zhang, J. Gao, C. Li, Y.P. Wu, et al.
Effects of carbon coatings on nanocomposite electrodes for lithium-ion batteries
Electrochem. Solid-State Lett, 9 (12) (2006), p. A529
CrossRefGoogle Scholar
[118]
S.W. Song, R.P. Reade, R. Kostecki, K.A. Striebel
Electrochemical studies of the LiFePO4 thin films prepared with pulsed loser deposition
J. Electrochem. Soc, 153 (1) (2006), pp. A12-A19
CrossRefView Record in ScopusGoogle Scholar
[119]
H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q. Wu
Kinetic study on LiFePO4/C nanocomposite synthesized by solid state technique
J. Power Sources, 159 (2006), p. 717
ArticleDownload PDFView Record in ScopusGoogle Scholar
[120]
S.B. Park, C.K. Park, J.T. Hwang, W.I. Cho, H. Jang
The origin of the residual carbon in LiFePO4 synthesized by wet milling
Bull. Korean Chem. Soc, 32 (2) (2011), pp. 536-540
CrossRefGoogle Scholar
[121]
S.A. Hong, S.J. Kim, J. Kim, B.G. Lee, K.Y. Chung, Y.W. Lee
Carbon coating on lithium iron phosphate (LiFePO4): comparison between continuous supercritical hydrothermal method and solid-state method
Chem. Eng. J., 198–199 (2012), pp. 318-326
ArticleDownload PDFView Record in ScopusGoogle Scholar
[122]
E. Avci
Enhanced cathode performance of nano-sized lithium iron phosphate composite using polytetrafluoroethylene as carbon precursor
J. Power Sources, 270 (2014), pp. 142-150
ArticleDownload PDFView Record in ScopusGoogle Scholar
[123]
X.C. Sun, K. Sun, B. Cui
Surface structure characterization and electrochemical characteristics of carbon-coated lithium iron phosphate (C-LiFePO4) particles
Mater. Res. Soc. Symp. Proc, 1388 (2012)
Google Scholar
[124]
C.Z. Lu, G.T. Kuo Fey, H.M. Kao
Study of LiFePO4 cathode materials coated with high surface area carbon
J. Power Sources, 189 (2009), pp. 155-162
ArticleDownload PDFView Record in ScopusGoogle Scholar
[125]
A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough
Phospho-olivines as positive electrode materials for rechargeable lithium batteries
J. Electrochem. Soc, 144 (4) (1997), p. 1188
CrossRefView Record in ScopusGoogle Scholar
[126]
D.H. Kim, J. Kim
Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties
Electrochem. Solid-State Lett, 9 (9) (2006), p. A439
CrossRefView Record in ScopusGoogle Scholar
[127]
Y. Xia, M. Yoshio, H. Noguchi
Improved electrochemical performance of LiFePO4 by increasing its specific electrochemistry
Electrochim. Acta, 52 (1) (2006), pp. 240-245
ArticleDownload PDFView Record in ScopusGoogle Scholar
[128]
G. Meligrana, C. Gerbaldi, A. Tuel, S. Bodoardo, N. Penazzi
Hydrothermal synthesis of high surface LiFePO4 powders as cathode for li-ion cells
J. Power Sources, 160 (2006), p. 516
ArticleDownload PDFView Record in ScopusGoogle Scholar
[129]
S. Franger, C. Benoit, C. Bourbon, F. Le Cras
Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries
J. Phys. Chem. Solids, 67 (2006), p. 1338
ArticleDownload PDFView Record in ScopusGoogle Scholar
[130]
A. Odani, A. Nimberger, B. Markovsky, E. Sominski, E. Levi, V.G. Kumar, et al.
Development and testing of nano materials for rechargeable lithium batteries
J. Power Sources, 517 (2003), pp. 119-121
View Record in ScopusGoogle Scholar
[131]
H.C. Wong, J.R. Carey, J.S. Chen
Physical and electrochemical properties of LiFePO4/C composite cathode prepared from aromatic diketone-containing precursors
Int. J. Electrochem. Sci, 5 (2010), pp. 1090-1102
View Record in ScopusGoogle Scholar
[132]
R. Shahid, S. Murugavel
Synthesis and characterization of olivine phosphate cathode material with different particle sizes for rechargeable lithium-ion batteries
Mater. Chem. Phys, 140 (2013), pp. 659-664
ArticleDownload PDFView Record in ScopusGoogle Scholar
[133]
L. Wang, W. Sun, X. Tang, X. Huang, X. He, J. Li, et al.
Nano particles LiFePO4 prepared by solvothermal process
J. Power Sources, 244 (2013), pp. 94-100
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[134]
L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan
Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials
Nano Lett, 12 (11) (2012), pp. 5632-5636
CrossRefView Record in ScopusGoogle Scholar
[135]
X. Huang, X. He, C. Jiang, G. Tian
Morphology evolution and impurity analysis of LiFePO4 nanoparticles via a solvothermal synthesis process
RSC Adv, 4 (99) (2014), pp. 56074-56083
CrossRefView Record in ScopusGoogle Scholar
[136]
S.Y. Chung, J. Bloking, Y.M. Chiang
Electronically conductive phosphor-olivines as lithium storage electrodes
Nat. Mater, 1 (2002), p. 123
CrossRefView Record in ScopusGoogle Scholar
[137]
V. Lemos, S. Guerini, J. Mendes Filho, S.M. Lala, L.A. Montoro, J.M. Rosolen
A new insight into the LiFePO4 delithiation process
Solid State Ion, 177 (2006), p. 1021
ArticleDownload PDFView Record in ScopusGoogle Scholar
[138]
C. Delacourt, C. Wurm, L. Laffont, J.B. Leriche, C. Masquelier
Electrochemical and electrical properties of Nb-and/or C-containing LiFePO4 composites
Solid State Ion, 177 (2006), p. 333
ArticleDownload PDFView Record in ScopusGoogle Scholar
[139]
S.Y. Chung, Y.M. Chiang
Microscale measurements of the electrical conductivity of doped LiFePO4
Electrochem. Solid-State Lett, 6 (12) (2003), pp. A278-A281
View Record in ScopusGoogle Scholar
[140]
Y.L. Ruan
Effect of doping ions on electrochemical properties of LiFePO4 cathode
J. Adv. Mater. Res, 197–198 (2011), pp. 1135-1138
View Record in ScopusGoogle Scholar
[141]
D.Y. Zhang, L. Zhang, P.X. Zhang, M.C. Lin, X.Q. Huang, X.Z. Ren, et al.
Modification of LiFePo4 by citric acid coating and Nb5+ doping
J. Adv. Mater. Res, 158 (2011), pp. 167-173
CrossRefView Record in ScopusGoogle Scholar
[142]
G.X. Wang, S. Bewlay, S.A. Needham, H.K. Liu, R.C. Liu
Synthesis and characterization of LiFePO4 and LiTi0.01Fe0.99PO4 cathode materials
J. Electrochem. Soc, 153 (1) (2006), pp. A25-A31
CrossRefView Record in ScopusGoogle Scholar
[143]
Y.H. Sun, X.Q. Liu
Preparation and characterization of novel Ti-doped M-site deficient olivine LiFePO4
Chin. Chem. Lett, 17 (8) (2006), pp. 1093-1096
View Record in ScopusGoogle Scholar
[144]
O. Fredrick, N.A. Chernova, S. Upreti, P.Y. Zavalij, K.W. Nam, X.Q. Yang, et al.
Can vanadium be substituted into LiFePO4
Chem. Mater, 23 (2011), pp. 4733-4740
Google Scholar
[145]
L.L. Zhang, G. Liang, A. Ignatov, M.C. Croft, X. Xiao-Qin, H. I-Ming, et al.
Effect of vanadium incorporation of electrochemical performance of LiFePO4 for lithium ion batteries
J. Phys. Chem, 115 (2011), pp. 13520-13527
CrossRefView Record in ScopusGoogle Scholar
[146]
C. Ya-Wen, C. Jenn-Shing
A study of electrochemical performance of LiFePO4/C composites doped with Na and V
Int. J. Electrochem. Sci, 7 (2012), pp. 8128-8139
Google Scholar
[147]
M. Wagemaker, B.L. Ellis, D. Lutzenkirchen-Hecht, F.M. Mulder, L.F. Nazar
Proof of supervalent doping in olivine LiFePO4
Chem. Mater, 20 (20) (2008), pp. 6313-6315
CrossRefView Record in ScopusGoogle Scholar
[148]
J. Hong, C.S. Wang, X. Chen, S. Upreti, M.S. Whittingham
Vanadium modified LiFePO4 cathode for li-ion batteries
Electrochem. Solid-State Lett, 12 (2) (2009), pp. A33-A38
CrossRefView Record in ScopusGoogle Scholar
[149]
N. Hua, C. Wang, X. Kang, T. Wumair, Y. Han
Studies of V doping for the LiFePO4-based Li Ion batteries
J. Alloy. Comp, 503 (2010), pp. 204-208
ArticleDownload PDFView Record in ScopusGoogle Scholar
[150]
C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, et al.
Improved high-rate charge/discharge performances of LiFePO4/C via V-doping
J. Power Sources, 193 (2009), pp. 841-845
ArticleDownload PDFView Record in ScopusGoogle Scholar
[151]
T. Yanwen, K. Xiaoxue, L. Liying, X.U. Chaqing, Q.U. Tao
Research on cathode material of Li-ion battery by yttrium doping
J. Rare Earth, 26 (2) (2008), p. 279
View Record in ScopusGoogle Scholar
[152]
S.J. Moon, T. Kouh, C.S. Lee, C.S. Kim
Investigation of microscopic crystal field in co-doped lithium-iron phosphate
IEEE Trans. Magn, 45 (6) (2009), pp. 2584-2586
8
View Record in ScopusGoogle Scholar
[153]
Y. Lin, Y. Lin, T. Zhou, G. Zhao, Y. Huang, Z. Huang
Enhanced electrochemical performances of LiFePO4/C by surface modification with Sn nanoparticles
J. Power Sources, 226 (2013), pp. 20-26
ArticleDownload PDFView Record in ScopusGoogle Scholar
[154]
H. Shu, X. Wang, Q. Wu, B. Hu
Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for Lithium ion batteries
J. Power Sources, 237 (2013), pp. 149-155
ArticleDownload PDFView Record in ScopusGoogle Scholar
[155]
M. Zhao, B. Zhang, G. Huang, H. Zhang, X. Song
Excellent rate capabilities of (LiFePO4/C)//LiV3O8 in an optimized aqueous solution electrolyte
J. Power Sources, 232 (2013), pp. 181-186
ArticleDownload PDFView Record in ScopusGoogle Scholar
[156]
M. Cuisinier, N. Dupre, M. Jean-Frederic, R. Kanno, D. Guyomard
Evolution of the LiFePO4 positive electrode interface along cycling monitored by MAS NMR
J. Power Sources, 224 (2013), pp. 50-58
ArticleDownload PDFView Record in ScopusGoogle Scholar
[157]
J.H. Kim, S.C. Woo, M.S. Park, K.J. Kim, T. Yim, J.S. Kim, et al.
Capacity fading mechanism of LiFePo4 based lithium secondary batteries for stationary energy storage
J. Power Sources, 229 (2013), pp. 190-197
ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar
[158]
J. Wang, Y. Tang, J. Yang, R. Li, G. Liang, X. Sun
Nature of LiFePO4 aging process: roles of impurity phases
J. Power Sources, 238 (2013), pp. 454-463
ArticleDownload PDFView Record in ScopusGoogle Scholar
[159]
T. Ohzuku, A. Ueda
Solid-state redox reaction of LiCoO2 (R3m) for 4 volt secondary lithium cells
J. Electrochem. Soc, 141 (11) (1994), pp. 2677-2972
Google Scholar
[160]
G. Li, Z. Yang, W. Yang
Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries
J. Power Sources, 183 (2008), pp. 741-748
ArticleDownload PDFView Record in ScopusGoogle Scholar
[161]
M. Menetrier, D. Carlier, M. Blangero, C. Delmas
Stoichiometric LiCoO2 can be difficult to obtain on “really” stoichiometric LiCoO2
Electrochem. Solid-State Lett, 11 (11) (2008), pp. A179-A182
CrossRefGoogle Scholar
[162]
Z. Li, D. Zhang, F. Yang
Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material
J. Mater. Sci, 44 (2009), pp. 2435-2443
CrossRefView Record in ScopusGoogle Scholar
[163]
O. Toprakci, H.A.K. Toprakci, L. Ji, Z. Xiangwu
Fabrication and electrochemical characteristics of LiFePO4 powders fir lithium-ion batteries
KONA Powder Part. J., 28 (2010), pp. 50-73
CrossRefView Record in ScopusGoogle Scholar
DC-AC inverter REC Lion DC-AC ESP32 DIY inv. 15 GB za sekundu DIY MPPT Holder
Zjedz vsetko, co si kupil, v obchode a netreba ti tasku, auto ci chladnicku.
Zjedz vsetko, co si kupil, v obchode a netreba ti tasku, auto ci chladnicku.
-
- Příspěvky: 286
- Registrován: sob pro 01, 2012 11:19 pm
Re: Katóda LiFePO4
Dúfam že si tie odkazy do bodky preštudoval!
-
- Podobná témata
- Odpovědi
- Zobrazení
- Poslední příspěvek
-
- 21 Odpovědi
- 2659 Zobrazení
-
Poslední příspěvek od pezizka
-
- 90 Odpovědi
- 7998 Zobrazení
-
Poslední příspěvek od drzhor
-
- 17 Odpovědi
- 1294 Zobrazení
-
Poslední příspěvek od Soban
-
- 10 Odpovědi
- 967 Zobrazení
-
Poslední příspěvek od Kostěj