Jak funguje solární elektrárna?
Napsal: pát dub 02, 2021 3:13 pm
Jak funguje solární elektrárna?
Solární elektrárny jsou nesporně fascinující zařízení. Je takřka jisté, že většina návštěvníků stránek MyPower.cz má s nimi zkušenosti a dokázali by vysvětlit princip jejich fungování do nejmenších detailů. Výjimečně se tedy zaměříme na začátečníky, kterým se pokusíme vysvětlit, jak tato zařízení fungují. Budeme rádi, když se přidáte a případně rozšíříte povědomí v diskuzi pod článkem.
Začněme tedy definicí solární elektrárny. Takto můžeme označit prakticky jakékoli zařízení, které přeměňuje sluneční světlo na elektřinu. Může to dělat buď přímo, což je typické pro solární panely, nebo nepřímo - například transformací tepla nebo pohybu.
Existuje tedy několik typů solárních elektráren, přičemž každý využívá trochu odlišné principy a technologii. První díl tohoto článku věnujeme rozdělení zařízení na výrobu elektřiny z energie slunce podle jejich typu.
Fotovoltaické elektrárny
Fotovoltaické elektrárny využívají k přeměně slunečního záření na využitelnou elektřinu fotovoltaické články, označované také často jako solární panely. Ty jsou zpravidla umístěny na větší ploše, a kromě článků sestávají ze statické, nebo pohyblivé konstrukce.
Samotné panely tři základní formy. První dvě jsou krystalické solární panely - jak napovídá název, jsou tyto typy panelů vyrobené z krystalického křemíku. Mohou být buď monokrystalické nebo polykrystalické. Monokrystalické panely jsou zpravidla efektivnější (20 % a více), ale dražší, zatímco polykrystalické jsou levnější, ale mají tendenci být méně efektivní (mezi 15 a 17 %). Vývoj ale tuto hranici postupně stírá.
Třetí kategorii můžeme označit jako tenkovrstvé solární panely. Tento typ panelů se skládá z několika vzájemně se překrývajících filmů, které absorbují světlo v různých částech elektromagnetického spektra. Toto provedení je ideální pro aplikace ve formě pružné fólie na stávající povrchy nebo pro integraci do stavebních materiálů, jako jsou střešní tašky.
Tyto typy solárních panelů vyrábějí elektřinu, která je pak obvykle přímo dodávána do sítě nebo skladována v bateriích. Elektrárny, využívající krystalické či tenkovrstvé fotovoltaické panely, se obvykle skládají z následujících základních komponent:
Většina fotovoltaických panelů je vyrobena z polovodičových materiálů - obvykle z nějaké formy křemíku. Když fotony ze slunečního světla zasáhnou polovodičový materiál, dojde ke generování volných elektronů, které následně mohou protékat materiálem a produkovat stejnosměrný elektrický proud. Tomuto jevu se říká fotoelektrický efekt.
Než bude možné použít získanou elektřinu, nebo ji přivést do elektrické sítě, je nutné stejnosměrný proud (DC) transformovat na střídavý proud (AC) pomocí střídače (invertoru). Fotovoltaické panely se liší od ostatních typů solárních elektráren tím, že přímo využívají fotoelektrický efekt bez nutnosti dalších procesů nebo zařízení.
Fotovoltaické panely tedy žádným způsobem nekoncentrují energii - jednoduše přeměňují fotony na elektřinu, která se pak přenáší dál. Na rozdíl od solárně-termálních elektráren, o kterých bude řeč dále, například nepoužívají kapalné látky k přenosu tepla.
Co je solárně-termální elektrárna?
Dostávám se k dalšímu typu elektráren, využívajících k výrobě elektrické energie sluneční paprsky - solárně-termálním elektrárnám. Proti fotovoltaice je v nich energie slunce kumulována takovým způsobem, aby vytvořila ohřála kapalinu. Ta pak pohání turbínu nebo jiný generátor, vyrábějící elektřinu.
Solární tepelné elektrárny lze rozdělit na tři druhy:
Elektrárny s parabolickými zrcadly používají zakřivená zrcadla. jež koncentrují sluneční paprsky do jednoho bodu či linie. V tomto bodě je pak umístěn kolektor, obsahující kapalinu (typicky vodu), která nepřetržitě proudí trubicemi. Koncentrované sluneční záření kapalinu ohřívá, a ta je pak koncentrována za účelem vytvoření vysokotlaké páry.
Ohřátá tekutina poté proudí do tepelného výměníku, kde ohřívá vodu, jež následně pohání parní turbínu, vyrábějící elektřinu. Aby zakřivená zrcadla podávala ve směru ke kolektoru vždy maximální výkon, musejí se pohybovat směrem za sluncem.
Lineární elektrárny
Lineární koncentrační systémy, někdy označované jako Fresnelovy reflektory, sestávají z velkých „polí“ zrcadel sledujících slunce. Obvykle jsou zarovnány v orientaci sever-jih, aby maximalizovaly míru zachyceného slunečního světla. Tato konfigurace umožňuje zrcadlům sledovat slunce z východu na západ v průběhu dne.
Podobně, jako jejich sourozenci s parabolickými zrcadly, shromažďují lineární koncentrační systémy sluneční energii pomocí dlouhých, obdélníkových zrcadel ve tvaru písmene U. Na rozdíl od parabolických systémů však lineární Fresnelovy reflektory umisťují trubici nad zrcadla, což umožňuje zrcadlům větší pohyblivost při sledování slunce.
Tento typ systému využívá princip Fresnelovy čočky, který umožňuje použití velkého koncentračního zrcadla s vysokou světelností a krátkou ohniskovou vzdáleností. Toto nastavení umožňuje soustředit sluneční světlo v přibližně 30krát vyšší intenzitě.
Solární antény
Solární antény také používají zrcadla k soustředění sluneční energie na kolektor. Zpravidla sestávají ze zrcadel, připomínajících talíř satelitního přijímače, sestavených z mozaiky malých zrcadel. Ta koncentrují energii na přijímač v ohniskovém bodě.
Podobně, jako u parabolických a lineárních systémů, směruje zrcadlová plocha sluneční světlo do jednoho bodu. Generované teplo je využito k přeměně na pohyb. Nejběžnějším typem tepelného motoru používaného pro tyto účely je Stirlingův motor. Ohřátá kapalina z přijímače paraboly se v něm používá k pohybu pístu a vytvoření mechanické energie.
Tato mechanická energie je pak pomocí generátoru nebo alternátoru přeměněna na elektřinu. Poměr koncentrace solární paraboly je mnohem vyšší než u lineárních systémů - teplota provozní kapaliny bývá vyšší než 749 stupňů Celsia. Americká armáda v současné době vyvíjí v Tooele v Utahu systém, čítající 429 Stirlingových motorů, schopný generovat až 1,5 MW.
Za týden přineseme pokračování, ve kterém se podíváme na solární věže, solární rybníky a další technologie pro přeměnu slunečních paprsků na elektrickou energii.
Solární elektrárny jsou nesporně fascinující zařízení. Je takřka jisté, že většina návštěvníků stránek MyPower.cz má s nimi zkušenosti a dokázali by vysvětlit princip jejich fungování do nejmenších detailů. Výjimečně se tedy zaměříme na začátečníky, kterým se pokusíme vysvětlit, jak tato zařízení fungují. Budeme rádi, když se přidáte a případně rozšíříte povědomí v diskuzi pod článkem.
Začněme tedy definicí solární elektrárny. Takto můžeme označit prakticky jakékoli zařízení, které přeměňuje sluneční světlo na elektřinu. Může to dělat buď přímo, což je typické pro solární panely, nebo nepřímo - například transformací tepla nebo pohybu.
Existuje tedy několik typů solárních elektráren, přičemž každý využívá trochu odlišné principy a technologii. První díl tohoto článku věnujeme rozdělení zařízení na výrobu elektřiny z energie slunce podle jejich typu.
Fotovoltaické elektrárny
Fotovoltaické elektrárny využívají k přeměně slunečního záření na využitelnou elektřinu fotovoltaické články, označované také často jako solární panely. Ty jsou zpravidla umístěny na větší ploše, a kromě článků sestávají ze statické, nebo pohyblivé konstrukce.
Samotné panely tři základní formy. První dvě jsou krystalické solární panely - jak napovídá název, jsou tyto typy panelů vyrobené z krystalického křemíku. Mohou být buď monokrystalické nebo polykrystalické. Monokrystalické panely jsou zpravidla efektivnější (20 % a více), ale dražší, zatímco polykrystalické jsou levnější, ale mají tendenci být méně efektivní (mezi 15 a 17 %). Vývoj ale tuto hranici postupně stírá.
Třetí kategorii můžeme označit jako tenkovrstvé solární panely. Tento typ panelů se skládá z několika vzájemně se překrývajících filmů, které absorbují světlo v různých částech elektromagnetického spektra. Toto provedení je ideální pro aplikace ve formě pružné fólie na stávající povrchy nebo pro integraci do stavebních materiálů, jako jsou střešní tašky.
Tyto typy solárních panelů vyrábějí elektřinu, která je pak obvykle přímo dodávána do sítě nebo skladována v bateriích. Elektrárny, využívající krystalické či tenkovrstvé fotovoltaické panely, se obvykle skládají z následujících základních komponent:
- Solární panely přeměňují sluneční světlo na elektřinu. Typicky generují stejnosměrný proud s napětím do 1500 V.
- Další nedílnou komponentou jsou střídače/invertory, jež transformují stejnosměrný proudu na střídavý.
- Obvykle je součástí monitorovací systém pro sledování, řízení a správu elektrárny.
- Často je k dispozici i připojeni k nějaké externí energetické síti.
- Pokud elektrárna generuje více než 500 kW, obvykle používá také transformátory s postupným zvyšováním výkonu.
Většina fotovoltaických panelů je vyrobena z polovodičových materiálů - obvykle z nějaké formy křemíku. Když fotony ze slunečního světla zasáhnou polovodičový materiál, dojde ke generování volných elektronů, které následně mohou protékat materiálem a produkovat stejnosměrný elektrický proud. Tomuto jevu se říká fotoelektrický efekt.
Než bude možné použít získanou elektřinu, nebo ji přivést do elektrické sítě, je nutné stejnosměrný proud (DC) transformovat na střídavý proud (AC) pomocí střídače (invertoru). Fotovoltaické panely se liší od ostatních typů solárních elektráren tím, že přímo využívají fotoelektrický efekt bez nutnosti dalších procesů nebo zařízení.
Fotovoltaické panely tedy žádným způsobem nekoncentrují energii - jednoduše přeměňují fotony na elektřinu, která se pak přenáší dál. Na rozdíl od solárně-termálních elektráren, o kterých bude řeč dále, například nepoužívají kapalné látky k přenosu tepla.
Co je solárně-termální elektrárna?
Dostávám se k dalšímu typu elektráren, využívajících k výrobě elektrické energie sluneční paprsky - solárně-termálním elektrárnám. Proti fotovoltaice je v nich energie slunce kumulována takovým způsobem, aby vytvořila ohřála kapalinu. Ta pak pohání turbínu nebo jiný generátor, vyrábějící elektřinu.
Solární tepelné elektrárny lze rozdělit na tři druhy:
- S parabolickými zrcadly
- Lineární
- Solární antény
Elektrárny s parabolickými zrcadly používají zakřivená zrcadla. jež koncentrují sluneční paprsky do jednoho bodu či linie. V tomto bodě je pak umístěn kolektor, obsahující kapalinu (typicky vodu), která nepřetržitě proudí trubicemi. Koncentrované sluneční záření kapalinu ohřívá, a ta je pak koncentrována za účelem vytvoření vysokotlaké páry.
Ohřátá tekutina poté proudí do tepelného výměníku, kde ohřívá vodu, jež následně pohání parní turbínu, vyrábějící elektřinu. Aby zakřivená zrcadla podávala ve směru ke kolektoru vždy maximální výkon, musejí se pohybovat směrem za sluncem.
Lineární elektrárny
Lineární koncentrační systémy, někdy označované jako Fresnelovy reflektory, sestávají z velkých „polí“ zrcadel sledujících slunce. Obvykle jsou zarovnány v orientaci sever-jih, aby maximalizovaly míru zachyceného slunečního světla. Tato konfigurace umožňuje zrcadlům sledovat slunce z východu na západ v průběhu dne.
Podobně, jako jejich sourozenci s parabolickými zrcadly, shromažďují lineární koncentrační systémy sluneční energii pomocí dlouhých, obdélníkových zrcadel ve tvaru písmene U. Na rozdíl od parabolických systémů však lineární Fresnelovy reflektory umisťují trubici nad zrcadla, což umožňuje zrcadlům větší pohyblivost při sledování slunce.
Tento typ systému využívá princip Fresnelovy čočky, který umožňuje použití velkého koncentračního zrcadla s vysokou světelností a krátkou ohniskovou vzdáleností. Toto nastavení umožňuje soustředit sluneční světlo v přibližně 30krát vyšší intenzitě.
Solární antény
Solární antény také používají zrcadla k soustředění sluneční energie na kolektor. Zpravidla sestávají ze zrcadel, připomínajících talíř satelitního přijímače, sestavených z mozaiky malých zrcadel. Ta koncentrují energii na přijímač v ohniskovém bodě.
Podobně, jako u parabolických a lineárních systémů, směruje zrcadlová plocha sluneční světlo do jednoho bodu. Generované teplo je využito k přeměně na pohyb. Nejběžnějším typem tepelného motoru používaného pro tyto účely je Stirlingův motor. Ohřátá kapalina z přijímače paraboly se v něm používá k pohybu pístu a vytvoření mechanické energie.
Tato mechanická energie je pak pomocí generátoru nebo alternátoru přeměněna na elektřinu. Poměr koncentrace solární paraboly je mnohem vyšší než u lineárních systémů - teplota provozní kapaliny bývá vyšší než 749 stupňů Celsia. Americká armáda v současné době vyvíjí v Tooele v Utahu systém, čítající 429 Stirlingových motorů, schopný generovat až 1,5 MW.
Za týden přineseme pokračování, ve kterém se podíváme na solární věže, solární rybníky a další technologie pro přeměnu slunečních paprsků na elektrickou energii.