# **User Manual**

# 1KVA-5KVA INVERTER / CHARGER

# **Table Of Contents**

| ABOUT THIS MANUAL                        |    |
|------------------------------------------|----|
| Purpose                                  | 1  |
| Scope                                    | 1  |
| SAFETY INSTRUCTIONS                      | 1  |
|                                          |    |
| INTRODUCTION                             | 2  |
| Features                                 |    |
| Basic System Architecture                |    |
| Product Overview                         | 3  |
| INSTALLATION                             | 4  |
| Unpacking and Inspection                 | 4  |
| Preparation                              |    |
| Mounting the Unit                        | 4  |
| Battery Connection                       | 5  |
| AC Input/Output Connection               | 7  |
| PV Connection                            | 8  |
| Final Assembly                           |    |
| Communication Connection                 | 10 |
| Dry Contact Signal                       | 10 |
| OPERATION                                | 11 |
| Power ON/OFF                             | 11 |
| Operation and Display Panel              | 11 |
| LCD Display Icons                        | 12 |
| LCD Setting                              | 14 |
| Display Setting                          | 20 |
| Operating Mode Description               | 23 |
| Fault Reference Code                     |    |
| Warning Indicator                        | 25 |
| SPECIFICATIONS                           | 26 |
| Table 1 Line Mode Specifications         | 26 |
| Table 2 Inverter Mode Specifications     | 27 |
| Table 3 Charge Mode Specifications       | 28 |
| Table 4 General Specifications           | 29 |
| TROUBLE SHOOTING                         | 30 |
| Annendix: Annroximate Back-up Time Table | 31 |

# **ABOUT THIS MANUAL**

### **Purpose**

This manual describes the assembly, installation, operation and troubleshooting of this unit. Please read this manual carefully before installations and operations. Keep this manual for future reference.

# **Scope**

This manual provides safety and installation guidelines as well as information on tools and wiring.

# SAFETY INSTRUCTIONS



WARNING: This chapter contains important safety and operating instructions. Read and keep this manual for future reference.

- 1. Before using the unit, read all instructions and cautionary markings on the unit, the batteries and all appropriate sections of this manual.
- 2. **CAUTION** --To reduce risk of injury, charge only deep-cycle lead acid type rechargeable batteries. Other types of batteries may burst, causing personal injury and damage.
- 3. Do not disassemble the unit. Take it to a qualified service center when service or repair is required. Incorrect re-assembly may result in a risk of electric shock or fire.
- 4. To reduce risk of electric shock, disconnect all wirings before attempting any maintenance or cleaning. Turning off the unit will not reduce this risk.
- 5. **CAUTION** Only qualified personnel can install this device with battery.
- 6. **NEVER** charge a frozen battery.
- 7. For optimum operation of this inverter/charger, please follow required spec to select appropriate cable size. It's very important to correctly operate this inverter/charger.
- 8. Be very cautious when working with metal tools on or around batteries. A potential risk exists to drop a tool to spark or short circuit batteries or other electrical parts and could cause an explosion.
- 9. Please strictly follow installation procedure when you want to disconnect AC or DC terminals. Please refer to INSTALLATION section of this manual for the details.
- 10. Fuses (3 pieces of 40A, 32VDC for 1KVA, 4 pieces of 40A, 32VDC for 2KVA and 6 pieces for 3KVA, 1 piece of 200A, 58VDC for 4KVA and 5KVA) are provided as over-current protection for the battery supply.
- 11. GROUNDING INSTRUCTIONS -This inverter/charger should be connected to a permanent grounded wiring system. Be sure to comply with local requirements and regulation to install this inverter.
- 12. NEVER cause AC output and DC input short circuited. Do NOT connect to the mains when DC input short circuits.
- 13. **Warning!!** Only qualified service persons are able to service this device. If errors still persist after following troubleshooting table, please send this inverter/charger back to local dealer or service center for maintenance.

# INTRODUCTION

This is a multi-function inverter/charger, combining functions of inverter, MPPT solar charger and battery charger to offer uninterruptible power support with portable size. Its comprehensive LCD display offers user-configurable and easy-accessible button operation such as battery charging current, AC/solar charger priority, and acceptable input voltage based on different applications.

#### **Features**

- Pure sine wave inverter
- Built-in MPPT solar charge controller
- Configurable input voltage range for home appliances and personal computers via LCD setting
- Configurable battery charging current based on applications via LCD setting
- Configurable AC/Solar Charger priority via LCD setting
- Compatible to mains voltage or generator power
- Auto restart while AC is recovering
- Overload/ Over temperature/ short circuit protection
- Smart battery charger design for optimized battery performance
- Cold start function

# **Basic System Architecture**

The following illustration shows basic application for this inverter/charger. It also includes following devices to have a complete running system:

- · Generator or Utility.
- PV modules (option)

Consult with your system integrator for other possible system architectures depending on your requirements.

This inverter can power all kinds of appliances in home or office environment, including motor-type appliances such as tube light, fan, refrigerator and air conditioner.

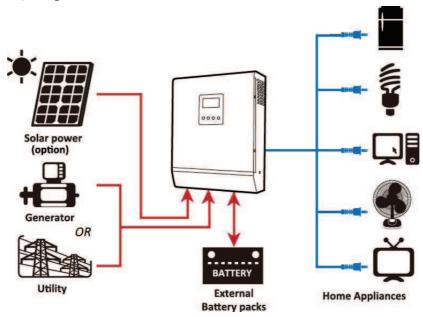
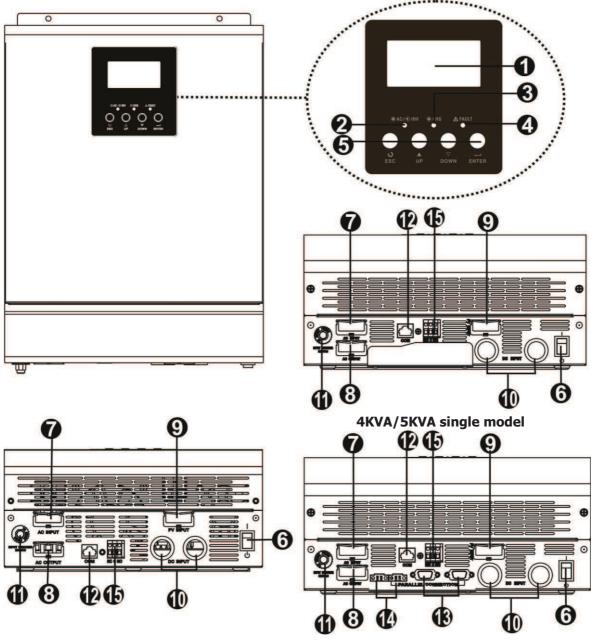




Figure 1 Hybrid Power System

# **Product Overview**



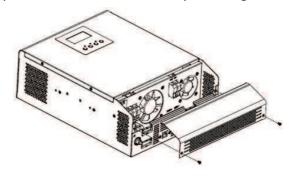
1-3KVA model

**NOTE:** For parallel model installation and operation, please check separate parallel installation guide for the details.

4KVA/5KVA parallel model

- 1. LCD display
- 2. Status indicator
- 3. Charging indicator
- 4. Fault indicator
- 5. Function buttons
- 6. Power on/off switch
- 7. AC input
- 8. AC output
- 9. PV input
- 10. Battery input
- 11. Circuit breaker
- 12. RS232 communication port
- 13. Parallel communication cable (only for parallel model)
- 14. Current sharing cable (only for parallel model)
- 15. Dry contact

# **INSTALLATION**


# **Unpacking and Inspection**

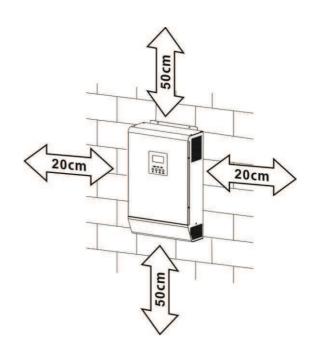
Before installation, please inspect the unit. Be sure that nothing inside the package is damaged. You should have received the following items inside of package:

- The unit x 1
- User manual x 1
- · Communication cable x 1
- Software CD x 1

# **Preparation**

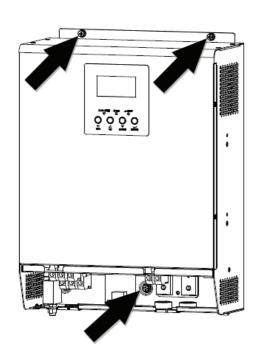
Before connecting all wirings, please take off bottom cover by removing two screws as shown below.

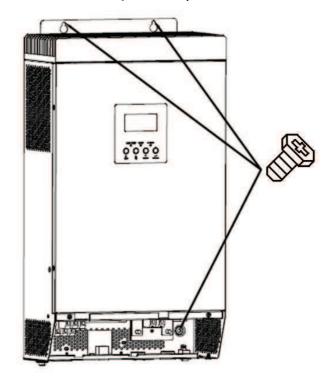



# **Mounting the Unit**

Consider the following points before selecting where to install:

- Do not mount the inverter on flammable construction materials.
- Mount on a solid surface
- Install this inverter at eye level in order to allow the LCD display to be read at all times.
- The ambient temperature should be between 0°C and 55°C to ensure optimal operation.
- The recommended installation position is to be adhered to the wall vertically.
- Be sure to keep other objects and surfaces as shown in the right diagram to guarantee sufficient heat dissipation and to have enough space for removing wires.





SUITABLE FOR MOUNTING ON CONCRETE OR OTHER NON-COMBUSTIBLE SURFACE ONLY.



#### 1-3KVA 24V, 1KVA/3KVA 48V model

#### 2-3KVA 24V/48V Plus, 4-5KVA 48V model





# **Battery Connection**

**CAUTION:** For safety operation and regulation compliance, it's requested to install a separate DC over-current protector or disconnect device between battery and inverter. It may not be requested to have a disconnect device in some applications, however, it's still requested to have over-current protection installed. Please refer to typical amperage in below table as required fuse or breaker size. **Ring terminal:** 

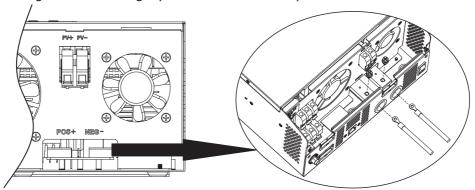
**WARNING!** All wiring must be performed by a qualified personnel.

**WARNING!** It's very important for system safety and efficient operation to use appropriate cable for battery connection. To reduce risk of injury, please use the proper recommended cable and terminal size as below.





#### **Recommended battery cable and terminal size:**


| Model              | Typical  | Battery  | Wire Size | Ring Terminal   |            |        | Torque     |
|--------------------|----------|----------|-----------|-----------------|------------|--------|------------|
|                    | Amperage | Capacity |           | Cable           | Dimensions |        | Value      |
|                    |          |          |           | mm <sup>2</sup> | D (mm)     | L (mm) |            |
| 1KVA 48V           | 20A      | 100AH    | 1*14AWG   | 2               | 6.4        | 21.8   | 2~ 3 Nm    |
| 1KVA 24V, 2KVA 48V | 33A      | 100AH    | 1*10AWG   | 5               | 6.4        | 22.5   | 2~ 3 Nm    |
| 3KVA 48V           | 50A      | 100AH    | 1*8AWG    | 8               | 6.4        | 23.8   | 2~ 3 Nm    |
| 2KVA 24V           | 66A      | 100AH    | 1*6AWG    | 14              | 6.4        | 29.2   | 2~ 3 Nm    |
| ZNVA 24V           | OOA      | 200AH    | 2*10AWG   | 8               | 6.4        | 23.8   | 27~ 3 NIII |
| 3KVA 24V           | 1004     | 100AH    | 1*4AWG    | 22              | 6.4        | 33.2   | 2~ 3 Nm    |
| 3NVA 24V           | 100A     | 200AH    | 2*8AWG    | 14              | 6.4        | 29.2   | 2~ 3 NIII  |
| 4KVA               | 66A      | 200AH    | 1*4AWG    | 22              | 6.4        | 33.2   | 2~ 3 Nm    |
| TRVA               | 00A      | 200AH    | 2*8AWG    | 14              | 6.4        | 29.2   | 2~ 3 NIII  |
| 5KVA               | 87A      | 2004     | 1*4AWG    | 22              | 6.4        | 33.2   | 2~ 3 Nm    |
| JNVA               | 0/A      | 200AH    | 2*8AWG    | 14              | 6.4        | 29.2   | Z~ 3 WIII  |

Please follow below steps to implement battery connection:

- 1. Assemble battery ring terminal based on recommended battery cable and terminal size.
- 2. Connect all battery packs as units requires. It's suggested to connect at least 100Ah capacity battery for 1-3KVA model and at least 200Ah capacity battery for 4KVA/5KVA model.

**NOTE:** Please only use sealed lead acid battery or sealed GEL/AGM lead-acid battery.

3. Insert the ring terminal of battery cable flatly into battery connector of inverter and make sure the bolts are tightened with torque of 2-3 Nm. Make sure polarity at both the battery and the inverter/charge is correctly connected and ring terminals are tightly screwed to the battery terminals.





#### **WARNING: Shock Hazard**

Installation must be performed with care due to high battery voltage in series.



**CAUTION!!** Do not place anything between the flat part of the inverter terminal and the ring terminal. Otherwise, overheating may occur.

**CAUTION!!** Do not apply anti-oxidant substance on the terminals before terminals are connected tightly.

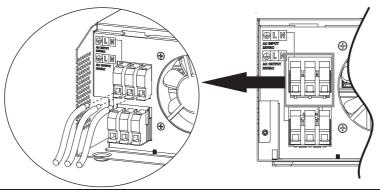
**CAUTION!!** Before making the final DC connection or closing DC breaker/disconnector, be sure positive (+) must be connected to positive (+) and negative (-) must be connected to negative (-).

# **AC Input/Output Connection**

**CAUTION!!** Before connecting to AC input power source, please install a **separate** AC breaker between inverter and AC input power source. This will ensure the inverter can be securely disconnected during maintenance and fully protected from over current of AC input. The recommended spec of AC breaker is 10A for 1KVA, 20A for 2KVA, 32A for 3KVA, 40A for 4KVA and 50A for 5KVA.

**CAUTION!!** There are two terminal blocks with "IN" and "OUT" markings. Please do NOT mis-connect input and output connectors.

**WARNING!** All wiring must be performed by a qualified personnel.

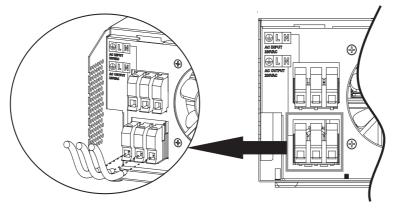

**WARNING!** It's very important for system safety and efficient operation to use appropriate cable for AC input connection. To reduce risk of injury, please use the proper recommended cable size as below.

Suggested cable requirement for AC wires

|             | ı       |              |  |  |
|-------------|---------|--------------|--|--|
| Model       | Gauge   | Torque Value |  |  |
| 1KVA        | 16 AWG  | 0.5~ 0.6 Nm  |  |  |
| 2KVA 230VAC | 14 AWG  | 0.8~ 1.0 Nm  |  |  |
| 2KVA 120VAC | 12 AWG  | 1.2~ 1.6 Nm  |  |  |
| 3KVA        | 12 AVVG |              |  |  |
| 4KVA        | 10 AWG  | 1.4~ 1.6Nm   |  |  |
| 5KVA        | 8 AWG   | 1.4~ 1.6Nm   |  |  |

Please follow below steps to implement AC input/output connection:

- 1. Before making AC input/output connection, be sure to open DC protector or disconnector first.
- 2. Remove insulation sleeve 10mm for six conductors. And shorten phase L and neutral conductor N 3 mm.
- 3. Insert AC input wires according to polarities indicated on terminal block and tighten the terminal screws. Be sure to connect PE protective conductor ( ) first.
  - **Ground** (yellow-green)
  - **L**→**LINE** (brown or black)
  - N→Neutral (blue)






#### **WARNING:**

Be sure that AC power source is disconnected before attempting to hardwire it to the unit.

- 4. Then, insert AC output wires according to polarities indicated on terminal block and tighten terminal screws. Be sure to connect PE protective conductor ( ) first.
  - **Ground** (yellow-green)
  - L→LINE (brown or black)
  - N→Neutral (blue)



5. Make sure the wires are securely connected.

#### **CAUTION: Important**

Be sure to connect AC wires with correct polarity. If L and N wires are connected reversely, it may cause utility short-circuited when these inverters are worked in parallel operation.

**CAUTION:** Appliances such as air conditioner are required at least 2~3 minutes to restart because it's required to have enough time to balance refrigerant gas inside of circuits. If a power shortage occurs and recovers in a short time, it will cause damage to your connected appliances. To prevent this kind of damage, please check manufacturer of air conditioner if it's equipped with time-delay function before installation. Otherwise, this inverter/charger will trig overload fault and cut off output to protect your appliance but sometimes it still causes internal damage to the air conditioner.

#### **PV Connection**

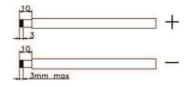
**CAUTION:** Before connecting to PV modules, please install **separately** a DC circuit breaker between inverter and PV modules.

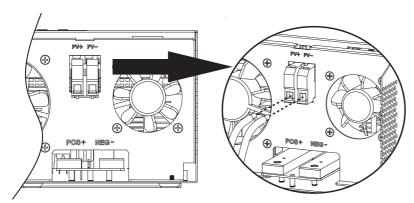
**WARNING!** All wiring must be performed by a qualified personnel.

**WARNING!** It's very important for system safety and efficient operation to use appropriate cable for PV module connection. To reduce risk of injury, please use the proper recommended cable size as below.

| Model                | Typical Amperage | Cable Size | Torque        |
|----------------------|------------------|------------|---------------|
| 1KVA 24V / 2KVA 24V/ | 25A              | 12 AWG     | 1.2~1.6 Nm    |
| 3KVA 24V             | ZJA              | 12 AVVG    | 1.27°1.0 NIII |
| 1KVA 48V / 3KVA 48V  | 18A              | 14 AWG     | 1.2~1.6 Nm    |
| 2KVA 24V Plus        |                  |            |               |
| 3KVA 24V Plus        |                  |            |               |
| 2KVA 48V Plus        | 60A              | 8 AWG      | 1.4~1.6 Nm    |
| 3KVA 48V Plus        |                  |            |               |
| 4KVA / 5KVA          |                  |            |               |

#### **PV Module Selection:**

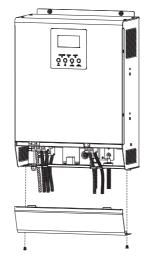

When selecting proper PV modules, please be sure to consider below parameters:


- 1. Open circuit Voltage (Voc) of PV modules not exceeds max. PV array open circuit voltage of inverter.
- 2. Open circuit Voltage (Voc) of PV modules should be higher than min. battery voltage.

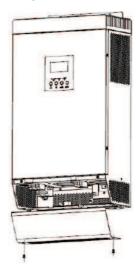
| Solar Charging Mode                |                                  |                      |                                    |                                              |  |  |
|------------------------------------|----------------------------------|----------------------|------------------------------------|----------------------------------------------|--|--|
| INVERTER MODEL                     | 1KVA 24V<br>2KVA 24V<br>3KVA 24V | 1KVA 48V<br>3KVA 48V | 2KVA 24V<br>Plus/ 3KVA<br>24V Plus | 2KVA 48V<br>Plus/3KVA 48V<br>Plus/ 4KVA/5KVA |  |  |
| Max. PV Array Open Circuit Voltage | 75Vdc max                        | 102Vdc max           | 145Vdc                             |                                              |  |  |
| PV Array MPPT Voltage Range        | 30~66Vdc                         | 60~88Vdc             | 30~115Vdc                          | 60~115Vdc                                    |  |  |
| Min. battery voltage for PV charge | 17Vdc                            | 34Vdc                | 17Vdc                              | 34Vdc                                        |  |  |

Please follow below steps to implement PV module connection:

- 1. Remove insulation sleeve 10 mm for positive and negative conductors.
- 2. Check correct polarity of connection cable from PV modules and PV input connectors. Then, connect positive pole (+) of connection cable to positive pole (+) of PV input connector. Connect negative pole (-) of connection cable to negative pole (-) of PV input connector.







3. Make sure the wires are securely connected.

# **Final Assembly**

After connecting all wirings, please put bottom cover back by screwing two screws as shown below.



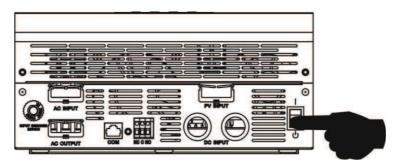
1KVA/2KVA/3KVA



2KVA Plus/3KVA Plus/4KVA/5KVA

## **Communication Connection**

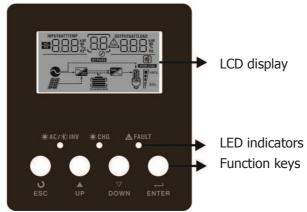
Please use supplied communication cable to connect to inverter and PC. Insert bundled CD into a computer and follow on-screen instruction to install the monitoring software. For the detailed software operation, please check user manual of software inside of CD.


# **Dry Contact Signal**

There is one dry contact (3A/250VAC) available on the rear panel. It could be used to deliver signal to external device when battery voltage reaches warning level.

| Unit Status |             |     | (               | Condition                          | Dry contact port: NC C NO |        |  |
|-------------|-------------|-----|-----------------|------------------------------------|---------------------------|--------|--|
|             |             |     |                 |                                    | NC & C                    | NO & C |  |
| Power Off   | Unit is off | fan | d no output is  | powered.                           | Close Open                |        |  |
|             | Output is   | pov | vered from Util | lity.                              | Close                     | Open   |  |
|             | Output      | is  | Program 01      | Battery voltage < Low DC warning   | Open                      | Close  |  |
|             | powered     |     | set as Utility  | voltage                            | Орсп                      | Close  |  |
|             | from        |     |                 | Battery voltage > Setting value in |                           |        |  |
|             | Battery     | or  |                 | Program 13 or battery charging     |                           | Open   |  |
| Power On    | Solar.      |     |                 | reaches floating stage             |                           |        |  |
|             |             |     | Program 01      | Battery voltage < Setting value in | Open                      | Close  |  |
|             |             |     | is set as       | Program 12                         | Ореп                      | Close  |  |
|             |             |     | SBU or          | Battery voltage > Setting value in |                           |        |  |
|             |             |     | Solar first     | Program 13 or battery charging     | Close                     | Open   |  |
|             |             |     |                 | reaches floating stage             |                           |        |  |

# **OPERATION**


# **Power ON/OFF**



Once the unit has been properly installed and the batteries are connected well, simply press On/Off switch (located on the button of the case) to turn on the unit.

# **Operation and Display Panel**

The operation and display panel, shown in below chart, is on the front panel of the inverter. It includes three indicators, four function keys and a LCD display, indicating the operating status and input/output power information.



#### **LED Indicator**

| LED Indicator  |       |          | Messages                                            |
|----------------|-------|----------|-----------------------------------------------------|
| *AC/*INV       | Green | Solid On | Output is powered by utility in Line mode.          |
| AC/ ALINA      |       | Flashing | Output is powered by battery or PV in battery mode. |
| * CHG          | Green | Solid On | Battery is fully charged.                           |
|                |       | Flashing | Battery is charging.                                |
| <b>▲ FAULT</b> | Red   | Solid On | Fault occurs in the inverter.                       |
|                |       | Flashing | Warning condition occurs in the inverter.           |

#### **Function Keys**

| Function Key | Description                                                    |
|--------------|----------------------------------------------------------------|
| ESC          | To exit setting mode                                           |
| UP           | To go to previous selection                                    |
| DOWN         | To go to next selection                                        |
| ENTER        | To confirm the selection in setting mode or enter setting mode |